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Abstract

This work is an exploration of a practical application of the newly

born Spectral Graph Theory based on the Signless Laplacian Matrix

(also called the Q-theory) by establishing some new theorems regard-

ing bipartite graphs. Bipartite graphs are well known for their impor-

tance in modelling real world networks starting from protein-protein

interaction network to the world-wide web. For example, bipartite

components of a protein interaction networks comprise those node

sets which are involved in interaction according to the Lock and Key

model based on complementary binding domain.

For a connected simple graph G, the smallest eigenvalue of its signless

Laplacian spectrum indicates whether or not G is bipartite, while the

largest eigenvalue of its normalised Laplacian spectrum indicates the

same also. In this thesis, some tight inequalities relating the small-

est signless Laplacian eigenvalue to the largest normalised Laplacian

eigenvalue are derived. It is also investigated how vectors yielding

small values of the Rayleigh quotient for the signless Laplacian matrix

can in general be used to identify certain subgraphs. Moreover a suffi-

cient condition under which these subgraphs are in general guaranteed

to be bipartite is also provided. As these subgraphs are expected to

be “weakly connected” to the rest of the graph, sufficient conditions

for that are also provided. All these relations derived under this work

are verified by applying them on some graphs with degree sequences

approximately following a power law degree distribution with expo-

nent 2.1 thus forming a scale-free network such as a protein-protein

interaction network and this method results into exploration of more

number of bipartite subgraphs compared to those obtained through

adjacency matrix eigenvector method. Hence it provides better re-

sults.

Keywords : Bipartite subgraph, Signless Laplacian matrix, Normal-

ized Laplacian matrix.
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Chapter 1

Introduction

1.1 Spectral Graph Theory- an overview

Based on linear algebra and well-developed theory of matrices, Spectral Graph

theory is concerned with the relationship between the algebraic properties of the

spectra of certain matrices associated with a graph and topological properties

of that graph. Although based on theory of matrices, this theory has its own

reasoning and characteristic features for which it can’t be reduced to the theory

of matrices. In the next few subsections, we will be familiar with this fact.

1.1.1 The M-Theory

1 As in spectral graph theory, we study a graph by means of the eigenvalues of the

some graph matrix M , so it is also called M - Theory (Cvetkovic & Simic (2009)).

Depending upon M -the theory changes. So from that point of view the spectral

theory of graph is not unique. Three major matrices are: A- the Adjacency

matrix, L- the Laplacian matrix, and Q- the Signless Laplacian matrix. Based

on these three matrices three different spectral theory has been developed which

are called the A-theory, the L-theory and the Q-theory respectively. The aim of

spectral theory of graph is to study these theories and their interactions.

1This M -theory should not be confused with that in theoretical physics which is an extension

of string theory with 11 dimension
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1.1 Spectral Graph Theory- an overview

1Let Φ be a graph without multiple edges. The adjacency matrix of Φ is a 0-1

matrix A of vertex set VΦ of Φ, where Axy = 1 when there is an edge from x to

y in Φ and Axy = 0 otherwise. For multi graphs (possibly with loops) in which

case Axy equals the number of edges from x to y. Throughout the thesis , we will

concentrate only on undirected graphs.

Let Φ be an undirected graph without loops. The (vertex-edge) incidence matrix

of Φ is the 0-1 matrix M , with rows indexed by the vertices and columns indexed

by the edges, where Mxe = 1 when vertex x is an endpoint of edge e.

Let Φ be a directed graph without loops. The directed incidence matrix of Φ is the

0-1 matrix N , with rows indexed by the vertices and columns by the edges, where

Nxe = −1, 1, 0 when x is the head of e, the tail of e, or not on e,respectively.

Let Φ be an undirected graph without loops. The Laplace matrix of Φ is the

matrix L indexed by the vertex set of Φ, with zero row sums, where Lxy = Axy

for x 6= y. If D is the diagonal matrix, indexed by the vertex set of Φ such that

Dxx is the degree (valency) of x, then L = D − A. The matrix Q = D + A is

called the Signless Laplace matrix of Φ (we will discuss the spectral theory based

on the signless Laplacian matrix in a short while). An important property of the

Laplace matrix L and the Signless Laplace matrix Q is that they are positive

semi-definite. Indeed, one has Q = MMT and L = NNT if M is the incidence

matrix of Φ and N the directed incidence matrix of the directed graph obtained

by orienting the edges of Φ in an arbitrary way. It follows that for any vector u

one has uTLu=Σxy ( ux − uy ) 2 and uTQu=Σxy ( ux + uy ) 2, where the sum is

over the edges of Φ.

1.1.2 The Spectrum of a Graph

The (ordinary) spectrum of a finite graph can be defined as the set of eigenvalues

of A together with their multiplicities. The Laplace spectrum of a finite undi-

rected graph without loops is the spectrum of the Laplace matrix L. The rows

and columns of a matrix of order n are numbered from 1 to n, while A is indexed

1These informations and the informations just in the next subsection are mostly taken

from (Brouwer & Haemers) with slight modifications in few places. One can consult any other

references as these are very common.
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1.1 Spectral Graph Theory- an overview

by the vertices of , so that writing down A requires one to assign some numbering

to the vertices. However, the spectrum of the matrix obtained does not depend

on the numbering chosen. It is the spectrum of the linear transformation A on

the vector space KX of maps from X into K, where X is the vertex set, and K

is some field such as R or C. The characteristic polynomial of is that of A, that

is, the polynomial κA defined by κA (θ) = det ( θI − A ).

Example Let be the path P3 with three vertices and two edges. Assigning

some arbitrary order to the three vertices of , we find that the adjacency matrix

A becomes one of 0 1 1
1 1 0
1 1 0

 or
0 1 0

1 0 1
0 1 0

 or
0 0 1

0 0 1
1 1 0

 .
The characteristics polynomial is pA (θ) = θ3 − 2θ. The spectrum is

√
2, 0 ,−

√
2.

The eigenvectors are :[√
2 2 −

√
2
]T
and

[
1 0 −1

]T
and

[√
2 −2

√
2
]T
.

Each entries in a eigenvector corresponding to a vertex in the graph. For example

in the first eigenvector the similar entries correspond to two end vertices and

rest one correspond to the middle vertex,in the second eigenvector 1 and −1

correspond to two end vertices and 0 corresponds to the middle vertex. Now

mathematically ,let for an eigenvector u, we write ux as a label at the vertex x;

we have Au = θu if and only if Σy←x uy = θux for all x.) The Laplace matrix L

is one of  2 −1 −1
−1 1 0
−1 0 1

 or
 1 −1 0
−1 2 −1
0 −1 1

 or
 1 0 −1

0 0 −1
−1 −1 0

 .
Eigenvalues are 0 , 1 and 3. The Laplace eigenvectors are[

1 1 1
]T
and

[
1 0 −1

]T
and

[
1 −2 1

]T
.

We have Lu = θu if and only if Σy∼x uy = (dx-θ) for all x, where dx is the degree

of vertex x.)
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1.2 Q- theory

Example Let be a directed triangle with adjacency matrix

A =

0 1 0
0 0 1
1 0 0

 .
The A has characteristics polynomial κA(θ) = θ3 - 1 and spectrum 1, ω, ω2, where

ω is a primitive cube root of unity.

Example Let be the directed graph with two vertices and a single directed

0 1 edge. Then A=

[
0 1
0 0

]
with κA(θ) = θ2. So A has eigenvalue with geometric

multiplicity (i.e., the dimension of the corresponding eigenspace) equal to 1 and

algebraic multiplicity (i.e., its multiplicity as root of polynomial κA) equal to 2.

1.2 Q- theory

1 The Q-theory or the spectral graph theory based on the signless Laplacian

matrix was first developed by Prof. Dragos Cvetkovic of faculty of Electrical En-

gineering, University of Belgrade, Serbia in the year 2005. This theory has been

developed due to having less spectral uncertainty (see A.2) while studying graphs

compare to two other theories i.e, A -theory - spectral Graph theory based on the

Adjacency matrix, and L-theory- spectral graph theory based on Laplacian matrix.

From the year 2005 onwards numerous developments on this theory with several

new conjectures have been made. We will focus especially on the theorems for

bipartite graphs based on signless Laplacian matrix as it is the main theme of

the this work. But before that let’s go through some preliminaries.

According to a comprehensive research report by Prof. Cvetkovic (Cvetkovic

(2010)) , apart from the issue of spectral uncertainty , there are two other rea-

sons for which Prof. Cvetkovic found possibilities to formulate this theory - An

existing connection between Q-eigenvalues and spectra of line graphs implying

that the existing developed theory of graphs with least eigenvalues - 2 (Cvetkovic

1This Q comes from the word Quasi -laplacian matrix which is the alternative name of the

signless laplacian matrix

5



1.2 Q- theory

(2005)),(Cvetkovic et al. (2004)) and a pragmatic reason - it was a very nascent

field that time.

1.2.1 Some important properties of Q-spectra with re-

spect to bipartite graphs

Consider a graph G(n,m)1 and R be its vertex-edge incidence matrix . Then the

following relations can be made:

RRT = D + A,RTR = A(L(G)) + 2I, (1.1)

where A(L(G)) is the adjacency matrix of L(G), the line graph (see Appdx.A) of

G. Since the non -zero entries in RRTandRTR are the same, we immediately get

that

PL(G)(x) = (x+ 2)m−nQG(x+ 2). (1.2)

These two equations are very common and can be found to any book or paper

(Cvetkovic (2010)) related to this. From (1.1), it is evident that the signless Lapla-

cian is a positive semi-definite matrix i.e., all its eigenvalues are non-negative. Let

the Q-eigenvalues q1 ≥ q2 ≥ .... ≥ qn. The largest eigenvalue q1 is called Q-index

of G.

When applying the Perron-Frobenius theory of non-negative matrices (see A.1) to

the signless Laplacian Q, the results obtained are same as that of the adjacency

matrix. In a connected graph the largest eigenvalue is simple with a positive

eigenvector. For a connected graph q1(G) > q
′
1(S(G)), where S(G) is a subgraph

of G.

Now the smallest eigenvalue of the signless Laplacian has a special importance

with respect to bipartite graphs. Here we will go through some propositions and

1G has no isolated vertices

6



1.2 Q- theory

theorems regarding the same. These prorpostions are very common. These can

be found in (Cvetkovic (2010)).

Proposition 1.2.1. The least eigenvalue of the signless Laplacian of a connected

graph is equal to 0 if and only if the graph is bipartite. In this case 0 is a simple

eigenvalue.

Proof. Let xT = (x1, x2, ..., xn). For a non-zero vector x we have Qx = 0 if and

only if RTx = 0. The later holds if and only if xi = xj for every edge, i.e. if and

only if G is bipartite. Since the graph is connected, x is determined up to a scalar

multiple by the value of its coordinate corresponding to any fixed vertex i.

Remark 1.2.1. According to Theorem 2.2.4 in (Cvetkovic et al. (2004)), the

multiplicity of the eigenvalue −2 in L(G) is equal to m − n + 1 if G is bipartite

,and equal to m− n if G is not bipartite. This together with formula (1.2) yields

the assertion of the proposition.

Corollary 1.2.1. In an graph the multiplicity of the eigenvalue 0 of the signless

Laplacian is equal to the number of bipartite components.

Proposition 1.2.2. The eigenspace of the Q-eigenvalue 0 of a graph G deter-

mines sets of vertices and the bipartitions in bipartite components of G.

Proof. Let xT = (x1, x2, ..., xn).For a non-zero vector x we have Qx = 0 if and

only if xi = xj for every edge. If the graph is connected (and then necessarily

bipartite ) , x is determined up to a scalar multiple by the value of its coordinate

corresponding to any fixed vertex i. If G is disconnected, at least one component

is bipartite. If a vertex i belongs to a non-bipartite component, then xi = 0.

Using Corollary 1.2.1 we determine the number of bipartite components as the

multiplicity of eigenvalue 0. For each bipartite component we have an eigenvector

with non-zero coordinates exactly for vertices in this component. Now, vertex

sets of bipartite components are determined by non-zero coordinates in vectors

of a suitably chosen orthogonal basis of the eigenspace of 0. The sign of these

coordinates determines colour classes within bipartite components.

The least eigenvalue of Q-spectra also helpful in determining the measure of

non-bipartiteness of a graph(Desai & Rao (1994)). In particular for a connected

7



1.2 Q- theory

graph,
ψ2

4dmax
≤ qn ≤ 4ψ,

Where dmax is the maximal vertex degree and ψ is the measure of non-bipartiteness

which is minimum over all non-empty proper subset S of V (G) of the quotient

|cut(S)|+ emin(S)

|S|
.

where the numerator is the minimum number of edges whose removal from edge

set E(G) disconnects S from V − S and results in a bipartite subgraph induced

by S (Desai & Rao (1994)).

Remark 1.2.2. Q-polynomial is only help full in giving information about bipar-

titeness of a graph when we know that the graph is connected and on the other

hand it is also interesting that Q-polynomial does not tell us about connectedness

of graph (Cvetkovic (2010)). As we know that when a graph is bipartite the Q-

polynomial and the L-polynomial are same and as L polynomial is the indication

of connectedness of a graph then, for Q -polynomial, if we know one of the two

conditions i.e., connectedness and bipartiteness, we can easily reconstruct one

from another. Next we are going to see an important proposition regarding the

above.

Proposition 1.2.3. The Q-polynomial of a graph is equal to the characteristics

polynomial of the Laplacian if and only if the graph is bipartite.

Proof. Suppose that the graph G is bipartite, with parts U and V . Consider the

determinant defining QG(x). Multiply by 1 all rows corresponding to vertices

in U and then do the same with the corresponding columns. The transformed

determinant now defines the characteristic polynomial of the Laplacian of G. The

multiplicity of the eigenvalue 0 in the Laplacian spectrum is equal to the number

of components, while for the signless Laplacian, the multiplicity of 0 is equal to

the number of bipartite components. Therefore in non-bipartite graphs the two

polynomials cannot coincide.

. As we can not establish whether a graph is bipartite or not from its Q-

polynomial, we do not know whether QG(λ) really equals LG(λ). Therefore along

with the connectedness information one should mention the number of connected

components to overcome the limitation in use of the above proposition.

8



1.3 Objective & overview of the work

1.3 Objective & overview of the work

Let G be a graph with adjacency matrix A, and denote the diagonal matrix of

vertex degrees for G by D. The matrix Q = D+A is known as the Signless Lapla-

cian matrix for G, and has been the subject of a flurry of recent papers. The

surveys (Cvetkovic & Simic (2009)), (Cvetkovic & Simic (2010a)), (Cvetkovic &

Simic (2010b)) give an overview of the research on the Signless Laplacian matrix

from the perspective of spectral Graph theory. In particular, it is known that the

signless Laplacian matrix Q for a graph G is positive semi-definite, and that the

multiplicity of 0 as an eigenvalue of Q coincides with the number of connected

components of G that are bipartite (Cvetkovic (2005)); thus, for a connected

graph G, the smallest eigenvalue of Q is positive if and only if G is not bipar-

tite. In a similar vein, if G is a Graph with no isolated vertices, the matrix L

= I − D−
1
2AD

1
2 is known as the Normalised Laplacian matrix for G (here, A

and D are as above). The spectral properties of the normalised Laplacian matrix

are also well-studied, and (Chung (1997)) gives an extensive discussion of how

the spectral properties of L reflect the structure of G. In particular, it is known

that the eigenvalues of the normalised Laplacian matrix fall in the interval [0, 2],

and that the multiplicity of 2 as an eigenvalue of Q coincides with the number of

connected components of G that are bipartite. Thus, as above, for a connected

graph G, the largest eigenvalue of L is less than 2 if and only if G is not bipar-

tite. Suppose now that we have a Graph G with Signless Laplacian matrix Q

and Normalised Laplacian matrix L. In view of the observations above, it might

be interpreted that the smallest eigenvalue of Q, say , as a measure of how bi-

partite our graph G is; alternatively, it is also interpreted the largest eigenvalue

of L, say as a measure of how bipartite our Graph G is. (It should be noted

in passing that both interpretations are philosophically related to the work of

Fielder (Fiedler (1973)), who proposed that the second smallest eigenvalue of the

Laplacian matrix D − A be used as a measure of the connectivity of G.) Since

both and provide notions of how bipartite G is, it is natural to investigate the

relationship between these two quantities. We do so in section 2.1, providing

upper and lower bounds on in terms of ; both bounds are tight, and we give

examples of infinite families of non-bipartite, non-regular graphs for which the

9



1.3 Objective & overview of the work

upper and lower bounds are attained, respectively.

The discussion above gives rise to the following scenario. Suppose that our con-

nected graph G is not bipartite, but its smallest Signless Laplacian eigenvalue is

close to zero. One might then have the intuition that G contains a bipartite sub

graph that is not very well connected with the rest of the graph. How might one

can identify such a sub graph? In section 2.2 , a condition (based on a Rayleigh

quotients(see A.4)) that is sufficient to identify a bipartite sub graph H in section

2.2 is provided. it is also given a condition at the same under which the number

of vertices of the sub graph H having at least one neighbour in G\H can be

bounded. Both results serve to reinforce the intuition noted above.

As a part of interest in identifying bipartite sub graphs that are only weakly

connected to the rest of the graph stems from the study of complex networks

such as protein-protein interaction networks, the world wide web, and certain

social networks (see (Newman (2003)) for a survey of work on this topic). Within

such networks, bipartite structures are important in verifying some useful prop-

erties (Guillaume & Latapy (2004)), (Thomas et al. (2003)) . For example, in the

case of protein-protein interaction networks, these bipartite sub graphs represent

biologically relevant interaction motifs (Morrison et al. (2006)). In chapter 3, we

use eigenvectors of the signless Laplacian matrix to generate certain Rayleigh quo-

tients that enable us to identify bipartite sub graphs using the results of section

2.2. That approach is applied to randomly generated graphs that approximate

scale-free networks (for detailed computation results see Table C.2 and Table C.4)

, and to a particular protein-protein interaction network (see Table C.4 and Table

C.5).

10



Chapter 2

Bipartite Subgraphs and the

Signless Laplacian Matrix

1

2.1 Extreme eigenvalues for the signless and nor-

malised Laplacian matrices

For a connected graph G, both the smallest signless Laplacian eigenvalue and the

largest normalised Laplacian eigenvalue for G serve as indicators as to whether

or not G is bipartite. Since both of these eigenvalues identify a common feature

of G (i.e., bipartiteness, or the lack thereof) it is natural to seek a quantifiable

relationship between these two eigenvalues. The following result does precisely

that.

Theorem 2.1.1. Let G be a connected graph on n vertices with signless Laplacian

matrix Q and normalised Laplacian L. Let the smallest eigenvalue of Q be µ and

the largest eigenvalue of L be λ. Denote the maximum and minimum degrees of

G by ∆ and δ respectively. Then

1This chapter is based upon the work done in collaboration with Prof. Steve Kirkland of

National University of Ireland, Maynooth, Ireland, Europe. This work has been presented in

The workshop on Linear Algebraic Techniques in Combinatorics/Graph Theory , Jan 30-Feb 04,

2011, at the Banff International Research Station, Alberta, Canada.
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2.1 Extreme eigenvalues for the signless and normalised Laplacian
matrices

2− µ

δ
≤ λ ≤ 2− µ

∆
. (2.1)

Proof. Let A denote the adjacency matrix of G, and D denote the diagonal ma-

trix of vertex degrees , so that Q = D + A and L = I −D− 1
2AD−

1
2 .

We consider the left hand inequality in (2.1). Let x be an eigenvector of Q

corresponding to µ. Without loss of generality, we write x as

[
x1

x2

]
, where both

x1 and x2 are nonnegative vectors. Partition D and A conformally with x as[
D1 0

0 D2

]
and

[
A11 A12

A21 A22

]
. Since xTQx = µxTx, we find that

xT1D1x1 + xT1A11x1 − 2xT1A12x2 + xT2D2x2 + xT2A22x2 = µ(xT1 x1 + xT2 x2) (2.2)

. Then the z =

[
D

1
2
1 x1

−D
1
2
2 x2

]
Then,

zTLz = xT1D1x1 − xT1A11x1 + 2xT1A12x2 + xT2D2x2 − xT2A22x2 (2.3)

.

We find that
zTLz

zT z
= 2 − µ

xTx

zT z
≥ 2 − µ

δ
. Finally using the fact that λ =

max{uTLu
uTu
|u 6= 0}, we find that,

λ ≥ 2− µ

δ
(2.4)

.

Next we consider the left hand in equality in (2.1). Now let y be an eigenvector of

L corresponding to λ and partition y as

[
y1

−y2

]
where y1 and y2 are nonnegative

vectors. partitionD andA conformally with y as as

[
D̂1 0

0 D̂2

]
and

[
Â11 Â12

Â21 Â22

]

12



2.1 Extreme eigenvalues for the signless and normalised Laplacian
matrices

(It should be kept in mind that partitioning for A and D here may be different

than the partitioning arising from x). Since yTy = λyTy, we have

yT1 y1−yT1 D̂
− 1

2
1 Â11D̂

− 1
2

1 y1+2yT1 D̂
− 1

2
1 Â12D̂

− 1
2

2 y2+yT2 y2−yT2 D̂
− 1

2
2 Â22D̂

− 1
2

2 y2 = λ(yT1 y1+yT2 y2).

(2.5)

Now let w =

[
D̂

1
2
1 y1

−D̂
1
2
2 y2

]
and note that wTQw = yT1 y1 + yT1 D̂

− 1
2

1 Â11D̂
− 1

2
1 y1 −

2yT1 D̂
− 1

2
1 Â12D̂

− 1
2

2 y2 + yT2 y2 + yT2 D̂
− 1

2
2 Â22D̂

− 1
2

2 y2. From (2.5) we find that wTQw =

(2− λ)yTy.

Since µ = min{uTQu
uTu
|u 6= 0}, we find that µ ≤ (2 − λ) y

T y
wTw

. Observing that
yT y
wTw
≤ ∆, we thus find that µ ≤ (2− λ) Rearranging this yields

λ ≤ 2− µ

∆
(2.6)

Evidently if G is regular (so that δ = ∆) or bipartite (so that µ = 0), then

equality holds throughout (2.1). The next two examples show that for non-

bipartite, non-regular graphs, equality can still hold in either of the inequalities

in (2.1). Throughout the thesis 1p is used to denote an all ones vector of order p

unless stated explicitly; the subscript will be suppressed when the order is clear

from the context.

Example 2.1.1. Suppose that m ∈ N with m ≥ 2, and let G be the graph given by

(Km

⋃
Km)

∨
K1 , where

⋃
denotes the union and

∨
denotes the join operation.

It should be noted that G is not bipartite, not regular, and has minimum degree

m. The signless Laplacian matrix for G can be written as

Q =

 (m− 1)I + J 0 1

0 (m− 1)I + J 1

1T 1T 2m

 ;

HereJ denotes all ones matrix. From this we find that the signless Laplacian

spectrum of 2m − 1,
4m− 1±

√
8m+ 1

2
, and m − 1, the later with multiplicity

13



2.1 Extreme eigenvalues for the signless and normalised Laplacian
matrices

2m− 2. Similarly, the normalised Laplacian matrix for G is

L =


m−1
m
I − 1

m
J 0 − 1

m
√

2
1

0 m−1
m
I − 1

m
J − 1

m
√

2
1

− 1
m
√

2
1T − 1

m
√

2
1T 1

 ;

It is then found that the normalised Laplacian spectrum is given by 0, 1
m

and m+1
m

,

the latter with multiplicity 2m− 1.

consequently we find that the largest normalised Laplacian eigenvalue is λ = m+1
m

,

the smallest normalised Laplacian eigenvalue is µ = m−1, and that equality holds

in (2.4).

Example 2.1.2. Suppose that m ∈ N with m ≥ 3, and consider the graph

Gon2m + 1 vertices constructed as follows: start with Km,m, and delete an edge

from it , say between vertices i and j; then take an isolated vertex k, and add the

edges k ∼ i and k ∼ j. Observe that G is not regular, is not bipartite, and has

maximum degree m.

The Signless Laplacian matrix G can be written as:

Q =


m 0T 0 1T 1

0 mI 1 J 0

0 1T m 0T 1

1 J 0 mI 0

1 0T 1 0T 2

 .

It now follows that the signless Laplacian spectrum of G consists of m (with mul-

tiplicity 2m − 4), m+1±
√
m2+2m−3
2

, and the roots of the cubic z3 − (3m + 1)z2 +

(2m2 +4m−3)z− (4m2−8m+4). Computations shows that the smallest signless

Laplacian eigenvalue for G is µ = m+1−
√
m2+2m−3
2

.

14



2.2 Small Rayleigh quotients for the signless Laplacian matrix

The normalised Laplacian matrix for G is given by

L =


1 0T 0 − 1

m
1T − 1√

2m

0 I − 1
m
1 − 1

m
J 0

0 − 1
m
1T 1 0T − 1√

2m

− 1
m
1 − 1

m
J 0 I 0

− 1√
2m

0T − 1√
2m

0T 1

 .

The eigenvalues of L are 0,1 (with multiplicity 2m− 4) ,2− 1
m

(m+1±
√
m2+2m−3
2

),

and
2+ 1

m
±
√

4
m
− 3

m2

2
. It follows that the largest normalised Laplacian eigenvalue is

λ = 2− 1
m

(m+1±
√
m2+2m−3
2

), and that equality hold in (2.6).

2.2 Small Rayleigh quotients for the signless Lapla-

cian matrix

From the results of section 2.2, we find that both the largest normalised Laplacian

eigenvalue, and the smallest signless Laplacian eigenvalue can be thought of as

providing a measure of how close a connected graph is to being bipartite. In this

section, we focus on the signless Laplacian matrix, as the analysis for that matrix

is somewhat more tractable than for the normalised Laplacian matrix.

Recall that the algebraic connectivity of a graph is the second smallest eigen-

value of its Laplacian matrix; see ((Abreu (2007))) and ((Kirkland (2007))) for

surveys on this remarkable quantity. The algebraic connectivity plays a role in

the following result, which provides a sufficient condition for a sub-graph to be

bipartite.

Theorem 2.2.1. Let G be a graph on k vertices with signless Laplacian matrix Q,

and let x ∈ Rk be a vector with at least one positive entry and at least one negative

entry. By permuting the entries of x and simultaneously permuting the rows and

columns of Q, we assume without loss of generality that xj < 0, j = 1, ..., l, xj >

0, j = l + 1, ..., n, and xj = 0, j = n + 1, ..., k. Let y denote the subvector of x on

its first n entries , let s =

[
1l

−1n−l

]
, let z = y − yT s

n
s, and let H0 denote the

15



2.2 Small Rayleigh quotients for the signless Laplacian matrix

subgraph of G induced by the edges in G of the form i where 1 ≤ i ≤ l < j ≤ n

Set ν = xTQx
xT x

and θ = n2yT y
(yT s)2

− n; denote the algebraic connectivity of H0 by α,

and let ε = min{(yi + yj)
2|i, j = 1, ..., l, i 6= j}{(yi + yj)

2|i, j = 1, ..., l, i 6= j}. If

ν <

n2ε
(yT s)2

+ αθ

n+ θ
, (2.7)

.

then the nonzero entries of x induce a bipartite subgraph of G.

Proof. We begin by remarking that θ provides a measure of how close y is to

s, since θ = 0 if and only if y = s, by the Cauchy-Shwarz inequality (see A.5).

Observing that z is orthogonal to s, we find readily that zT z = (yT s)2

n2 θ. We

partition z conformally with s as z =

[
u

−v

]
and let z̃ =

[
u

v

]
; observe that

z̃1 = 0. For each j = 1, ..., n, let d0(j) = |{r|j ∼ r, n + 1 ≤ r ≤ k}|. Since

xTQx =T x, we find that

νyTy =
∑

i∼j,1≤i,j≤l

(yi+yj)
2+

∑
i∼j,l+1≤i,j≤n

(yi+yj)
2+

∑
i∼j,1≤i≤l,l+1≤j≤n

(yi+yj)
2+

n∑
j=1

d0(j)y2
j .

νyTy ≥
∑

i∼j,1≤i,j≤l

(yi + yj)
2 +

∑
i∼j,l+1≤i,j≤n

(yi + yj)
2 +

∑
i∼j,1≤i≤l,l+1≤j≤n

(yi + yj)
2

=
∑

i∼j,1≤i,j≤l

(yi + yj)
2 +

∑
i∼j,l+1≤i,j≤n

(yi + yj)
2 + z̃TL(H0)z̃,

Where L(H0) is the Laplacian matrix of H0. As z1 = 0 , we have z̃TL(H0)z̃ ≥
αz̃T z̃ = αzT z.

We proceed by contraposition, so suppose that the induced subgraph on vertices

1, ..., n, which we denote by H, is not bipartite. Then without loss of general-

ity we may assume that l ≥ 2 and that H contains the edge 1 ∼ 2. From the

above, we have νyTy ≥ (y1 + y2)2 = αzT z ≥ ε + αzT z. Since zT z = (yT s)2

n2 θ and

yTy = (yT s)2

n
+ zT z, we find that

ν ≥
ε+ αθ (yT s)2

n2

(n+ θ) (yT s)2

n2

.

The conclusion now follows
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2.2 Small Rayleigh quotients for the signless Laplacian matrix

Example 2.2.1. In this example we illustrate the fact that , in the context of

Theorem (2.2.1) , some constraint on ν is needed in order to conclude that the

subgraph is bipartite.

Here we consider K3, whose corresponding signless Laplacian matrix is Q =2 1 1

1 2 1

1 1 2

. Let x =


3
4
3
4

−3
4

. We find readily that ν = xTQx
xT x

= 1, yT s = 3 =

n, θ = 3
8

and ε = 9
4
; the subgraph H0 induced by the edges 1 ∼ 2, 2 ∼ 3, is K1,2,

so α = 1. All of this yields ε+αθ
n+θ

= 7
9
, which is of course less than ν, as K3 is not

bipartite.

Remark 2.2.1. Suppose that in the context of (2.2.1), the subgraph of G on ver-

tices 1, ..., n − H say - is bipartite. Let R denote the principal submatrix of Q

on rows and columns 1, ..., n, we find readily that sTRs is the number of edges

between vertices in H and vertices in G\H. It is not difficult to determine that

sTRs ≥ µn, where µ denote the smallest eigenvalue of Q.

It is natural to anticipate that if ν is small, then the number of edges between

H and G\H will also be small; the results below are an attempt to reinforce that

intuition.

In the next result, we continue with the notation of (2.2.1)

Theorem 2.2.2. Suppose that ν < α, and let q = |{j|d0(j) ≥ 1, j = 1, ..., n}|.
Then q ≤ νn(1+α−ν

α−ν )

Proof. Let H denote the subgraph of G induced by vertices 1, ..., n. We begin

by remarking that q denotes the number of vertices in the subgraph H that are

adjacent to at least one vertex in G\H. Suppose for concreteness that d0(jp) ≥ 1

for p = 1, ..., q. Arguing as in the proof of (2.2.1), we have νn − (α − ν)zT z ≥
q∑
p=1

d0(jp)(1 + zjp)2 ≥
q∑
p=1

(1 + zjp)2.
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2.2 Small Rayleigh quotients for the signless Laplacian matrix

Set wT = [zj1 ...zjq ]. Then νn − (α − ν)wTw ≥
q∑
p=1

(1 + wi)
2. Applying Cauchy-

Schwarz inequality (twice), and letting β = wT1, we find that νn− (α− ν)β
2

q
≥

(q+β)2

q
. Consequently, we find that (1 + α − ν)β2 + 2qβ + q2 − νqn ≤ 0, and

by considering the left hand side as a quadratic in β, and then minimising that

quadratic we find that − q2

1+α−ν + q2− νqn ≤ 0. It now follows that q ≤ νn(1+α−ν
α−ν ,

as desired.

Remark 2.2.2. In the context of Theorem (2.2.2) , we always (trivially) have q ≤
n, so Theorem (2.2.2) only yields useful information in the case that ν(1+α−ν)

α−ν < 1.

It is straightforward to determine that this last holds only when either ν <
2+α−

√
4+α2

2
or ν > 2+α+

√
4+α2

2
. Evidently the latter condition violates the hypothe-

sis that ν < α in Theorem (2.2.2), so we conclude that Theorem (2.2.2) yields a

nontrivial bound on q when ν < 2+α−
√

4+α2

2
.

As above, we continue with the notation of Theorem (2.2.1). In the special case

that the vector x of Theorem 2.2.1 is an eigenvector corresponding to the smallest

signless Laplacian eigenvalue, we can derive an upper bound on the number of

edges between H and G\H.

Theorem 2.2.3. Let G be a graph on k vertices,and x be an eigenvector corre-

sponding to the smallest eigenvalue µ of Q.Suppose that xj < 0, j = 1, ..., l, xj >

0, j = l + 1, ..., n, and xj = 0, j = n + 1, ..., k. Let y denote the subvector of x on

its first n entries, let s =

[
1l

−1n−l

]
. Let θ = n2yT y

(yT s)2
− n, let R denote the princi-

pal submatrix of Q on vertices 1, ..., n and denote the largest eigenvalue of R by ρ.

Then sTRs ≤ µ n2

n+θ
+ ρ nθ

n+θ
.

Proof. Note that y is an eigenvalue of R corresponding to its smallest eigen-

value, which is necessarily µ. Denote the remaining eigenvalues of R by λ2 <

... < λn ≡ ρ, and let uj, j = 2, ..., n denote the corresponding eigenvectors,

which we take (without loss of generality) to be pairwise orthogonal, and or-

thogonal to y. We find that s = yT y
yT y

y +
n∑ uTj s

uTj uj
uj.. In particular, we find that

n = sT s = (yT s)2

yT y
+

n∑
j=2

(uTj s)
2

uTj uj
.
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2.2 Small Rayleigh quotients for the signless Laplacian matrix

Next we note that sTRs = µ (yT s)2)
yT y

+
n∑
j=2

λj
(uTj s)

2

uTj uj
≤ µ (yT s)2)

yT y
+ ρ

n∑
j=2

(uTj s)
2

uTj uj
=

µ (yT s)2)
yT y

+ ρ(n − (yT s)2)
yT y

). Using the fact that θ = n2yT y
(yT s)2)

− n, and rewriting in-

equality slightly now yields the desired conclusion.

Example 2.2.2. In this example, we revisit the graph G of Example 2.1.2, and

use it to illustrate the results of Theorems 2.2.1,2.2.2, 2.2.3 . As we saw earlier,

the signless Laplacian matrix for G can be written as

Q =


m 0T 0 1T 1

0 mI 1 J 0

0 1T m 0T 1

1 J 0 mI 0

1 0T 1 0T 2

 .

and the smallest signless Laplacian eigenvalue is µ = m+1−
√
m2+2m−3
2

It is straight-

forward to determine that the vector x =


−µ
1m−1

−1 + µ

−1m−1

0

 serves as µ-eigenvector.Applying

Theorem 2.2.1 with the vector x, we note that the subgraph H identified by the

nonzero entries of x is the subgraph of G formed by deleting the vertex of degree

2. Computing the relevant quantities, we find that ν = µ, ε = (2 − µ)2), yT s =

2(m− µ), n = 2m,α = 3m−2−
√
m2+4m−2
2

and θ = 2m(m−1)µ2

(m−µ)2
.t is straightforward to

show that as m → ∞, µ is asymptotic to 1
m

; on the other hand , the right-hand

side of (2.6) is asymptotic to 2
m

as m→∞, so that for all sufficiently large values

of m, we find that (2.6) is satisfied.

Referring to Theorem 2.2.2, we find that for the subgraph H of G, the value

of q is 2. Since α is readily seen to be asymptotic to m− 2 as m→∞ it follows

that as m → ∞, the expression νn(1+α−ν
α−ν ) coverges to 2 as m → ∞. Thus we

find that for all sufficiently large values of m, the upper bound on q furnishes by

the Theorem 2.2.2 is accurate.
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2.2 Small Rayleigh quotients for the signless Laplacian matrix

Turning to Theorem 2.2.3, we find that for the subgraph H, we have sTRs =

2.Note that the largest eigenvalue of R is readily seen to lie between 2m− 1 and

2m. It now follows that the expression µ n2

n+θ
+ ρ nθ

n+θ
converges to 2 as m → ∞,

so that Theorem 2.2.3 provides an accurate estimate of sTRs for this example.
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Chapter 3

Computation, Results and

Discussion

3.1 Inequality 2.1 for large graphs

Using NetworkX (see B.1) 100 multigraphs are radomly generated, each on 1000

vertices, whose degree sequences followed a power law distribution with exponent

2.1.(so a scale free network (see B.2)) Loops and multiple edges were then removed

to generate simple loop-free graphs whose degree sequences were close to following

a power law distribution. For each such graph, the connected component with

the largest number of vertices is considered, and for that component, the largest

normalised Laplacian eigenvalue , as well as the expressions 2 − µ
∆

and 2 − µ
δ

are computed , where is the smallest signless Laplacian eigenvalue, and where δ,

∆ represent the minimum and maximum degrees, respectively. The results are

depicted in Figure 3.1 below, which plots 2− µ
δ

(blue), λ (red), and 2− µ
∆

(yellow),

for each graph; here the graphs were sorted according to increasing values of . The

values of for these examples ranged between approximately 0.05055 and 0.23191

(see Table C.1). Since the graphs that were generated have degree sequences

that are roughly distributed according to a power law, their maximum degrees

are typically quite large, while the minimum degrees are quite small. These

observations are reflected in Figure 3.1: the of the blue graph corresponding to

2− µ
∆

is approximately constant, while the yellow graph corresponding to 2− µ
δ

is more sensitive to the value of µ.
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3.2 Identification of bipartite subgraphs in Scale Free Networks

Figure 3.1: 2− µ
δ
≤ λ ≤ 2− µ

∆

Note that for all of the graphs, the quantities 2− µ
∆

and 2− µ
δ

provide a fairly

small interval in which is contained.

3.2 Identification of bipartite subgraphs in Scale

Free Networks

Theorem 2.2.1 suggests a strategy for identifying bipartite subgraphs of a given

graph G. The approach is as follows:

1. compute a unit eigenvector v corresponding to the smallest signless Lapla-

cian eigenvalue for G;

2. construct the vector x from v by setting its entries of small absolute value

equal to zero.

3. if it happens that (2.7) holds, then the non-zero entries of x induce a bipar-

tite subgraph of G.

This approach is implemented on a collection of randomly generated graphs.

Specifically, using NetworkX (see B.1) 500 multigraphs, each on 600 vertices are

randomly generated, whose degree sequences followed a power law distribution
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3.3 A protein-protein interaction network

with exponent 2.1. Loops and multiple edges were then removed to generate

simple loop-free graphs whose degree sequences were close to following a power law

distribution. For each graph so generated, the connected component G containing

the maximum number of vertices is considered and computed the unit eigenvector

vG for the smallest eigenvalue of its signless Laplacian matrix.

Next, the vector xG from vG is formed by rounding all of its entries to the first

decimal place. Then the subgraph HG induced by the nonzero entries of xG is

considered . It should be noted here that the decision to round the entries of

vG to the first decimal place is motivated by a need to introduce some zeros

into the vectors with which the work is done , since an actual value of 0 is

a rare occurrence when computing eigenvectors numerically. Evidently different

strategies for approximating vG will yield different subgraphs; however the results

below suggest that our rounding method is reasonably successful in identifying

bipartite subgraphs that are weakly connected to the rest of the graph G.

For a total of 403 different graphs G, the subgraphs HG were connected, and

the corresponding vectors xG satisfied (2.7), so that bipartiteness was assured

by Theorem 2.2.1. These bipartite subgraphs were all of small order, containing

between 3 and 10 vertices, while the original connected graphs had orders ranging

from 548 to 598 vertices. For each of these 403 graphs the number of edges

between HG and the rest of G was at most 9; for 208 of these graphs, there was

just one edge between HG and the rest of G.

For a further 63 graphs G, the subgraphs HG were connected and bipartite, but

(2.7) did not hold. Again, the HGs were of small order between 3 and 16 vertices

while the orders of the connected graphs G ranged from 568 to 592. In each of

these cases, there were at most 11 edges connecting HG to the rest of G. For the

remaining 34 graphs, the subgraph HG was either not connected, or not bipartite,

or contained just two vertices.

Based on these computations, it appears that there is some utility in the approach

to identifying bipartite subgraphs suggested by Theorem 2.2.1.

3.3 A protein-protein interaction network

In (Bu et al. (2003)), the authors consider protein-protein interaction networks

and are interested in identifying bipartite (or nearly bipartite) subgraphs within
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3.3 A protein-protein interaction network

such networks; for finding such subgraphs leads to an enhanced understanding

of the function of the corresponding proteins. The approach to identifying such

bipartite subgraphs proposed in (Bu et al. (2003)) is to consider the network as a

graph, and then use eigenvectors of the adjacency matrix corresponding to small

eigenvalues in order to identify bipartite subgraphs. For the example of a protein-

protein interaction network on 2617 vertices (corresponding to budding yeast), it

is reported in (Bu et al. (2003)) that six so-called Quasi-bipartite subgraphs are

identified by this adjacency matrix eigenvector method.

In view of the results in section 2.2, it is natural to conjecture that eigenvectors of

the signless Laplacian matrix corresponding to small eigenvalues may also yield

an effective technique for identifying bipartite subgraphs of a protein-protein in-

teraction network. Below we describe the results of an implementation of this

idea.

The dataset describing a protein-protein interaction network for budding yeast

is used. That network has 2361 vertices, and 7182 edges, of which 536 are loops.

13 loops is been removed to yield a loop-free graph G on 2361 vertices with 6646

edges. The graph G consists of 101 connected components. One hundred of these

connected components are either trees (and so, necessarily bipartite) or isolated

vertices, of orders ranging from one to eight vertices; taken together they contain

137 vertices and 37 edges. The remaining connected component of G, which is

denoted by Ĝ, is a graph on 2224 vertices, with 6609 edges. Since the smallest

signless Laplacian eigenvalue for Ĝ is positive (approximately 0.0609), Ĝ is not

bipartite. Figure 3.2 gives a depiction of Ĝ.

Unit eigenvectors of the signless Laplacian matrix for Ĝ corresponding to its 50

smallest eigenvalues are considered. For each such unit eigenvector v, the vector

xv is formed by rounding the entries of v to the first decimal place. Then the

subgraph of Ĝ, say Hv , induced by the nonzero entries of xv is considered.

For a total of 12 such eigenvectors v, the corresponding subgraph Hv was con-

nected and the vector xv satisfied (2.7), thus ensuring that Hv was bipartite.

These subgraphs were of small order, between 3 and 8 vertices, and in each case

were joined to the rest of G by at most 15 edges. For 7 of these Hv s, there

was just one edge joining Hv to the rest of Ĝ. For a further 15 eigenvectors v,

the corresponding subgraph Hv was connected and bipartite, but (2.7) was not

satisfied by xv . Again the subgraphs were of orders between 3 and 8, and were
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3.3 A protein-protein interaction network

joined to the rest of Ĝ by at most 12 edges. For the remaining 23 eigenvectors

under consideration, the corresponding subgraph was either not connected, or

not bipartite, or consisted of just two vertices.

Based on these results, it seems that the technique of using signless Laplacian

eigenvectors for small eigenvalues to identify bipartite subgraphs represents an im-

provement on the adjacency eigenvector approach employed in (Bu et al. (2003)).

Pajek@yeast. 2224 nodes, 6609 edges.

Figure 3.2: The connected component Ĝ
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Chapter 4

Conclusion & Scope for Further
Research

In this thesis, an attempt is made to explore the possible real world application of

the emerging Q-theory or the spectral graph theory based on the signless Lapla-

cian matrix. The signless Laplacian matrix has its special importance in studying

bipartite graphs and bipartite graphs, in turn, have its own importance in mod-

elling different complex systems. The uniqueness of this work lies in exploring

the technique to identify bipartite subgraphs from the entries of eigenvector cor-

responding to an eigenvalue of the Q-spectrum and it is described in Chapter 2.

In Chapter 2, we come across four theorems in total. Theorem 2.1.1 gives the

the relation between the two extreme eigenvalues i.e, µ-the smallest eigenvalue

of the signless Laplacian spectrum and λ-the largest eigenvalue of the normal-

ized Laplacian spectrum. Theorem 2.2.1 gives the sufficient condition for the

subgraphs guaranteed to be bipartite. Theorem 2.2.2 and Theorem 2.2.3 gives

the characteristic of those bipartite subgraphs. These results are then applied to

a protein protein interaction network and it is shown that number of bipartite

components identified through this method is more than that of the adjacency

eigenvector method.

Coming to the future scope of this research, it can be said that many conjectures

have been stated within this theory regarding eigenvalues of the signless Lapla-

cian matrix(Cvetkovic et al. (2007)), some of them have been proved or disproved

and many of them are still in research. Whatever researches have been made so

far is to enrich the Q-theory itself but they lack of exploring interdisciplinary ap-
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plications. From that point of view, this work is the first attempt. In this work,

graphs are taken as undirected and simple. But many of the complex networks

are not fully undirected and also simple! like the metabolic network. Therefore

further generalization of this theory for digraphs and multigraphs can be made

so that it can address the reality in a more unconstrained way.
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Appendix A

Appdx A

A.1 The Perron-Frobenius Theorem of Non-negative

Matrices

A matrix or a vector can be said positive or negative according to the entries.

If the elements are positive then the matrix or the vector is said to be a positive

matrix or vector and if non-negative then it is said non-negative matrix or vector.

A non-negative matrix of dimension nxn is said to be irreducible if there is no

permutation of co-ordinates such that

P
′
AP =

A11 A12

0 A22

 .
Where P is an nxn permutation matrix (each row and each column have exactly

one 1 entry and all others 0), A11 is rxr, and A22 is (n − r)x(n − r). The

Perron-Frobenius theorem of irreducible matrix states the following:

Theorem A.1.1. If A is nxn, non-negative, irreducible, then,
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A.1 The Perron-Frobenius Theorem of Non-negative Matrices

• one of its eigenvalues(called the dominant) is positive and greater than or

equal to(in absulate value) all other eigenvalues.

• there is a positive eigenvector corresponding to that eigenvalue and

• that eigenvalue is a simple root of the charateristic equation of A.

.

A matrix of dimension nxn is said to be primitive if and only if Ak > 0 for some

power k. The next theorem due to Perron-Frobenius is based on this.

Theorem A.1.2. If A is nxn, non-negative,primitive,then,

• one of its eigenvalues(called the dominant) is positive and greater than or

equal to(in absulate value) all other eigenvalues.

• there is a positive eigenvector corresponding to that eigenvalue and

• that eigenvalue is a simple root of the charateristic equation of A.

.

Applications of this theorem is huge especially in algebraic graph theory (adja-

cency matrix of a strongly connected graph is irreducible and hence the theorem

is applicable here), population dynamics model , finite Markov chains and many

discrete models.
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A.2 Spectral Uncertainty

A.2 Spectral Uncertainty

The term spectral uncertainty is related to cospectrality and isomorphism of

graphs. So we should know what are cospectral graphs and how it is related to

graph isomorphism.

Graphs with the same spectrum of an associated matrix M (this matrix may be A

or L or Q) are called cospectral graphs with respect to M , or Mcospectral graphs.

Let H be a graph copectral with G but not isomorphic to G, is called cospectral

mate of G. Now the spectral uncertainty with respect to M is defined as the ratio:

|G′ |/|G| ,where G
′

is the cospectral mate of G with respect to M and both the graphs

are finite.

A.3 Line graph of a graph

Given a graph G, its line graph denoted by L(G) is graph such that

• each vertex of L(G) represents an edge of G; and

• two vertices of L(G) are adjacent if and only if their corresponding edges

share a common endpoint in G

.

A.4 Rayleigh quotient

The Rayleigh quotient denoted by R(A, x) for a given Hermitian matrix A

and non-zero vector x is defined as

x∗Ax

x∗x
.
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A.5 Cauchy-Schwarz inequality

For real matrices and vectors , the condition of being Hermitian reduces to that

of being symmetric, and the conjugate transpose x∗ to the usual transpose xT .

R(A, cx) = R(A, x) ,where c is a real scaler. λmin ≤ R(A, x) ≤ λmax ,where λ is

the eigenvalue of A.

A.5 Cauchy-Schwarz inequality

The Cauchy-Schwarz inequality states that for all vectors x and y of an inner

product space,

|〈x, y〉|2 ≤ 〈x, x〉.〈y, y〉

where 〈., .〉 is the inner product.
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Appendix B

Appdx B

B.1 NetworkX

NetworkX is a Python package for the creation, manipulation, and analysis of

complex networks. It consists of data structures for graphs (or networks) along

with graph algorithms, generators, and drawing tools. The structure of NetworkX

can be seen by the organization of its source code. The package provides classes

for graph objects, generators to create standard graphs, IO routines for reading

in existing datasets, algorithms to analyse the resulting networks and some basic

drawing tool. Most of the NetworkX API is provided by functions which take

a graph object as an argument. Methods of the graph object are limited to basic

manipulation and reporting. This provides modularity of code and documentation.
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B.2 Scale Free Networks

B.2 Scale Free Networks

Scale free networks are those networks whose degree distribution follow power

law with the exponent value between 2 and 3 i.e, P (k) ∼ ck−γ, where 2 < γ < 3.

The term scale free means maintaining self similarity in spite of adding more

nodes to the network. The properties of a scale free network are given below:

• Scale-free networks are more robust against failure. By this we mean that

the network is more likely to stay connected than a random network after

the removal of randomly chosen nodes.

• Scale-free networks are more vulnerable against non-random attacks. This

means that the network quickly disintegrates when nodes are removed ac-

cording to their degree.

• Scale-free networks have short average path lengths L ∼ logN/ log log k.,

where N is the number of nodes in the network and k is the scaling index

. The exmaples of such networks are: co-author scientific networks, the inter-

net and world-wide web, and protein-protein interaction and gene regulatory net-

works.
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Appendix C

Appdx C

Table C.1: Validation of the inequality 2.1. 1

µ λ U.B.or2− µ
∆
L.B.or2− µ

δ
U.B.-λ λ-L.B.

0.050554793 1.971044746 1.999877887 1.949445207 0.02883314 0.02159954

0.059689155 1.965355226 1.999872186 1.940310845 0.03451696 0.02504438

0.060481853 1.964842544 1.99981275 1.939518147 0.03497021 0.0253244

0.064697202 1.962370738 1.999845959 1.935302798 0.03747522 0.02706794

0.06506431 1.961777463 1.999784555 1.93493569 0.03800709 0.02684177

0.065836439 1.961618205 1.999920965 1.934163561 0.03830276 0.02745464

0.072037663 1.957488116 1.999896498 1.927962337 0.04240838 0.02952578

0.073430067 1.956476204 1.999507181 1.926569933 0.04303098 0.02990627

0.079467746 1.953232465 1.999846291 1.920532254 0.04661383 0.03270021

0.080949844 1.951102034 1.999866859 1.919050156 0.04876482 0.03205188

1Unless specified , the symbols in the table bears the same meaning as that in the previous

chapters.

34



0.0882469 1.947888956 1.999730955 1.9117531 0.051842 0.03613586

0.094276307 1.949389807 1.999628833 1.905723693 0.05023903 0.04366611

0.09561938 1.941916544 1.99973065 1.90438062 0.05781411 0.03753592

0.096624907 1.941129998 1.999624028 1.903375093 0.05849403 0.0377549

0.101149647 1.93816801 1.99984948 1.898850353 0.06168147 0.03931766

0.102621575 1.937713684 1.999661315 1.897378425 0.06194763 0.04033526

0.109152295 1.932706906 1.999309163 1.890847705 0.06660226 0.0418592

0.1105997 1.935842117 1.999559364 1.8894003 0.06371725 0.04644182

0.111740876 1.930540056 1.998925569 1.888259124 0.06838551 0.04228093

0.112299558 1.930190242 1.999241219 1.887700442 0.06905098 0.0424898

0.112740419 1.930221529 1.99951405 1.887259581 0.06929252 0.04296195

0.11522306 1.927973768 1.999579478 1.88477694 0.07160571 0.04319683

0.115334527 1.932407121 1.999461054 1.884665473 0.06705393 0.04774165

0.115503472 1.930679474 1.999850384 1.884496528 0.06917091 0.04618295

0.116024563 1.927470918 1.999351818 1.883975437 0.0718809 0.04349548

0.116756965 1.926809107 1.99983984 1.883243035 0.07303073 0.04356607

0.117298815 1.929960417 1.998961957 1.882701185 0.06900154 0.04725923

0.117864215 1.926014981 1.999587887 1.882135785 0.07357291 0.0438792

0.118742237 1.925339538 1.9998404 1.881257763 0.07450086 0.04408178

0.118807419 1.928412445 1.999804271 1.881192581 0.07139183 0.04721986

0.119418151 1.928029327 1.999638127 1.880581849 0.0716088 0.04744748

0.119854254 1.924475659 1.999747675 1.880145746 0.07527202 0.04432991

0.119908123 1.924433402 1.999842847 1.880091877 0.07540944 0.04434152
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0.119922191 1.92442784 1.999568625 1.880077809 0.07514079 0.04435003

0.120042786 1.924332998 1.999629498 1.879957214 0.0752965 0.04437578

0.120088079 1.9242982 1.999612619 1.879911921 0.07531442 0.04438628

0.120122876 1.924267783 1.999690405 1.879877124 0.07542262 0.04439066

0.120304759 1.924123829 1.999465312 1.879695241 0.07534148 0.04442859

0.120457049 1.924003483 1.999727473 1.879542951 0.07572399 0.04446053

0.120539473 1.923938753 1.999874699 1.879460527 0.07593595 0.04447823

0.12596727 1.923010347 1.999734246 1.87403273 0.0767239 0.04897762

0.127727934 1.921527175 1.999765206 1.872272066 0.07823803 0.04925511

0.12846818 1.921028124 1.999616513 1.87153182 0.07858839 0.0494963

0.128512795 1.921147374 1.999857208 1.871487205 0.07870983 0.04966017

0.134690344 1.922022579 1.998955889 1.865309656 0.07693331 0.05671292

0.136181213 1.915213246 1.999608675 1.863818787 0.08439543 0.05139446

0.136632374 1.916019755 1.999705534 1.863367626 0.08368578 0.05265213

0.137947846 1.913845262 1.99983279 1.862052154 0.08598753 0.05179311

0.138776383 1.913247834 1.999291957 1.861223617 0.08604412 0.05202422

0.138917234 1.913092681 1.999632494 1.861082766 0.08653981 0.05200992

0.139090143 1.912952026 1.999847656 1.860909857 0.08689563 0.05204217

0.141330878 1.911930282 1.999076269 1.858669122 0.08714599 0.05326116

0.14199663 1.91121046 1.99951537 1.85800337 0.08830491 0.05320709

0.143058484 1.9105477 1.999683499 1.856941516 0.0891358 0.05360618

0.145875463 1.909420249 1.99982232 1.854124537 0.09040207 0.05529571

0.146653479 1.907356977 1.999094732 1.853346521 0.09173775 0.05401046
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0.14836962 1.905919006 1.999589004 1.85163038 0.09367 0.05428863

0.148453353 1.905788005 1.999723551 1.851546647 0.09393555 0.05424136

0.15092184 1.906000198 1.999777729 1.84907816 0.09377753 0.05692204

0.151632036 1.902958281 1.999590184 1.848367964 0.0966319 0.05459032

0.151644994 1.903868584 1.999711702 1.848355006 0.09584312 0.05551358

0.152121827 1.902515464 1.99984004 1.847878173 0.09732458 0.05463729

0.154745324 1.903488816 1.999422592 1.845254676 0.09593378 0.05823414

0.155358673 1.902473301 1.999724052 1.844641327 0.09725075 0.05783197

0.155855546 1.901966211 1.99976738 1.844144454 0.09780117 0.05782176

0.158503584 1.898967613 1.99956811 1.841496416 0.1006005 0.0574712

0.159961355 1.898938183 1.999793064 1.840038645 0.10085488 0.05889954

0.16086762 1.902973635 1.999764813 1.83913238 0.09679118 0.06384126

0.163228138 1.896963679 1.999399897 1.836771862 0.10243622 0.06019182

0.164899994 1.893311814 1.99971812 1.835100006 0.10640631 0.05821181

0.165132213 1.898731835 1.999604947 1.834867787 0.10087311 0.06386405

0.168688394 1.891008754 1.99955956 1.831311606 0.10855081 0.05969715

0.17205512 1.890212745 1.999589367 1.82794488 0.10937662 0.06226787

0.172078791 1.888799893 1.999033265 1.827921209 0.11023337 0.06087868

0.172509264 1.88842168 1.999772715 1.827490736 0.11135103 0.06093094

0.17333741 1.893440229 1.999548601 1.82666259 0.10610837 0.06677764

0.177263451 1.883725835 1.999813013 1.822736549 0.11608718 0.06098929

0.177485474 1.886917096 1.999819812 1.822514526 0.11290272 0.06440257

0.177804814 1.890178355 1.999265269 1.822195186 0.10908691 0.06798317
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0.178977404 1.914917485 1.999735241 1.821022596 0.08481776 0.09389489

0.179441485 1.883135354 1.999545718 1.820558515 0.11641036 0.06257684

0.179764725 1.883951684 1.999201046 1.820235275 0.11524936 0.06371641

0.180666888 1.881556126 1.999498148 1.819333112 0.11794202 0.06222301

0.182571697 1.879906777 1.99979893 1.817428303 0.11989215 0.06247847

0.182655421 1.892139517 1.999681785 1.817344579 0.10754227 0.07479494

0.184079498 1.878616623 1.999455386 1.815920502 0.12083876 0.06269612

0.185734773 1.877088481 1.999806929 1.814265227 0.12271845 0.06282325

0.18947229 1.873982387 1.99973426 1.81052771 0.12575187 0.06345468

0.189614732 1.873511087 1.999810005 1.810385268 0.12629892 0.06312582

0.190090011 1.873363001 1.999507539 1.809909989 0.12614454 0.06345301

0.191633677 1.880657397 1.999630051 1.808366323 0.11897265 0.07229107

0.192838055 1.886232524 1.999389753 1.807161945 0.11315723 0.07907058

0.194268009 1.86952439 1.999667918 1.805731991 0.13014353 0.0637924

0.194664642 1.869143324 1.999655461 1.805335358 0.13051214 0.06380797

0.19473318 1.869086878 1.999625513 1.80526682 0.13053864 0.06382006

0.195964445 1.868094157 1.999129047 1.804035555 0.13103489 0.0640586

0.196960045 1.867069508 1.999779687 1.803039955 0.13271018 0.06402955

0.197763613 1.867332419 1.999734189 1.802236387 0.13240177 0.06509603

0.231909832 1.851537789 1.999653349 1.768090168 0.14811556 0.08344762

0.231909832 1.851537789 1.999653349 1.768090168 0.14811556 0.08344762

38



Table C.2: Computation results on Ĝs which satisfied the-

orem 2.2.2

Ĝn
1HG

b
2 HG

n
3 sTQs ν

ε n2

yT s
+αθ

n+θ
α θ ε

590 TRUE 5 4 0.132653 0.325259063 (0.38196601125+0j) 1.125 0.25

581 TRUE 5 4 0.174757 0.356937409 (0.38196601125+0j) 2.132963989 0.25

579 TRUE 6 2 0.089109 0.296058388 (0.38196601125+0j) 0.873345936 0.25

564 TRUE 5 2 0.155963 0.403164156 (0.38196601125+0j) 1.179138322 0.36

582 TRUE 3 3 0.307692 0.525641026 (1+0j) 0.65625 0.36

586 TRUE 5 4 0.132653 0.325259063 (0.38196601125+0j) 1.125 0.25

579 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

579 TRUE 5 3 0.122449 0.325259063 (0.38196601125+0j) 1.125 0.25

583 TRUE 5 1 0.094737 0.552925039 (0.518805695908+0j)0.385487528 0.49

578 TRUE 4 2 0.238938 0.684306562 (0.585786437627+0j)1.008310249 0.64

572 TRUE 4 1 0.14433 0.875815036 (0.585786437627+0j)0.299168975 0.81

582 TRUE 4 7 0.205882 0.600995247 (0.585786437627+0j)1.037037037 0.49

561 TRUE 4 1 0.174419 0.975917816 (0.585786437627+0j)0.24691358 0.81

580 TRUE 6 3 0.121212 0.230633378 (0.267949192431+0j)2.081632653 0.16

596 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

578 TRUE 4 2 0.265306 0.928146627 (0.585786437627+0j)0.839506173 0.81

592 TRUE 4 1 0.174419 0.975917816 (0.585786437627+0j)0.24691358 0.81

588 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

1Number of nodes in Ĝ
2Is the subgraph H of G bipartite?
3Number of nodes in HG
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567 TRUE 5 2 0.141509 0.329538833 (0.38196601125+0j) 1.625 0.25

578 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

590 TRUE 3 2 0.215686 0.428899083 (1+0j) 1.037037037 0.25

565 TRUE 4 1 0.174419 0.975917816 (0.585786437627+0j)0.24691358 0.81

570 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

580 TRUE 4 1 0.181818 0.869955872 (0.585786437627+0j)0.387811634 0.81

576 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

586 TRUE 4 1 0.174419 0.975917816 (0.585786437627+0j)0.24691358 0.81

580 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

585 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

584 TRUE 5 2 0.112245 0.325259063 (0.38196601125+0j) 1.125 0.25

584 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

578 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

584 TRUE 5 2 0.135417 0.205533391 (0.38196601125+0j) 1.140495868 0.16

581 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

576 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

568 TRUE 7 2 0.0625 0.203855622 (0.260322690258+0j)1.166666667 0.16

575 TRUE 6 3 0.149533 0.168002785 (0.267949192431+0j)2.734693878 0.09

587 TRUE 6 2 0.083333 0.312305486 (0.324869129433+0j)1.140495868 0.25

593 TRUE 5 7 0.203883 0.356937409 (0.38196601125+0j) 2.132963989 0.25

586 TRUE 4 2 0.161905 0.691812857 (0.585786437627+0j)0.653739612 0.64

585 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

581 TRUE 6 2 0.101852 0.21596245 (0.267949192431+0j)2.033057851 0.16
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590 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

582 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

569 TRUE 3 2 0.210526 0.412672624 (1+0j) 1.259515571 0.16

590 TRUE 5 2 0.166667 0.464840444 (0.518805695908+0j)1.375 0.36

578 TRUE 7 2 0.156522 0.157829481 (0.198062264195+0j)0.729766804 0.16

582 TRUE 5 5 0.184466 0.356937409 (0.38196601125+0j) 2.132963989 0.25

573 TRUE 5 1 0.094737 0.552925039 (0.518805695908+0j)0.385487528 0.49

584 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

577 TRUE 5 2 0.138298 0.34322638 (0.518805695908+0j)0.875 0.25

582 TRUE 6 3 0.121212 0.230633378 (0.267949192431+0j)2.081632653 0.16

577 TRUE 5 1 0.094737 0.552925039 (0.518805695908+0j)0.385487528 0.49

586 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

578 TRUE 5 2 0.11215 0.427603244 (0.518805695908+0j)1.065759637 0.36

577 TRUE 4 1 0.174419 0.975917816 (0.585786437627+0j)0.24691358 0.81

584 TRUE 6 2 0.111111 0.230368113 (0.324869129433+0j)2.033057851 0.16

584 TRUE 6 2 0.170213 0.239129514 (0.485863070665+0j)0.991735537 0.16

580 TRUE 5 5 0.184466 0.356937409 (0.38196601125+0j) 2.132963989 0.25

581 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

579 TRUE 5 4 0.132653 0.325259063 (0.38196601125+0j) 1.125 0.25

574 TRUE 5 1 0.10101 0.536618514 (0.38196601125+0j) 0.612244898 0.49

573 TRUE 6 2 0.122449 0.322660655 (0.38196601125+0j) 1.289256198 0.25

578 TRUE 3 1 0.207921 0.402640264 (1+0j) 0.14532872 0.36

583 TRUE 5 4 0.174757 0.356937409 (0.38196601125+0j) 2.132963989 0.25
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576 TRUE 5 1 0.126316 0.543130199 (0.38196601125+0j) 0.385487528 0.49

580 TRUE 5 3 0.165049 0.356937409 (0.38196601125+0j) 2.132963989 0.25

594 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

589 TRUE 5 3 0.122449 0.325259063 (0.38196601125+0j) 1.125 0.25

580 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

579 TRUE 5 2 0.141509 0.329538833 (0.38196601125+0j) 1.625 0.25

579 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

580 TRUE 4 2 0.156863 0.600995247 (0.585786437627+0j)1.037037037 0.49

584 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

574 TRUE 6 2 0.140187 0.168002785 (0.267949192431+0j)2.734693878 0.09

586 TRUE 6 3 0.132653 0.322660655 (0.38196601125+0j) 1.289256198 0.25

571 TRUE 6 1 0.069307 0.288803503 (0.324869129433+0j)0.873345936 0.25

586 TRUE 3 2 0.269231 0.525641026 (1+0j) 0.65625 0.36

583 TRUE 5 1 0.128713 0.533556089 (0.38196601125+0j) 0.725623583 0.49

590 TRUE 6 4 0.157895 0.349602834 (0.38196601125+0j) 1.755102041 0.25

573 TRUE 5 2 0.141509 0.329538833 (0.38196601125+0j) 1.625 0.25

592 TRUE 5 1 0.10101 0.536618514 (0.38196601125+0j) 0.612244898 0.49

578 TRUE 4 1 0.14433 0.875815036 (0.585786437627+0j)0.299168975 0.81

579 TRUE 4 3 0.166667 0.600995247 (0.585786437627+0j)1.037037037 0.49

548 TRUE 5 1 0.139785 0.714949111 (0.518805695908+0j)0.272108844 0.64

583 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

586 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

569 TRUE 5 1 0.10101 0.536618514 (0.38196601125+0j) 0.612244898 0.49
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565 TRUE 4 2 0.265306 0.928146627 (0.585786437627+0j)0.839506173 0.81

579 TRUE 4 1 0.141509 0.29245283 (1+0j) 0.24 0.25

585 TRUE 4 2 0.161905 0.691812857 (0.585786437627+0j)0.653739612 0.64

584 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

582 TRUE 4 1 0.181818 0.869955872 (0.585786437627+0j)0.387811634 0.81

581 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

588 TRUE 3 2 0.210526 0.412672624 (1+0j) 1.259515571 0.16

580 TRUE 6 2 0.170213 0.320137023 (0.38196601125+0j) 0.991735537 0.25

585 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

581 TRUE 3 2 0.210526 0.412672624 (1+0j) 1.259515571 0.16

590 TRUE 3 2 0.210526 0.653939886 (1+0j) 1.259515571 0.49

581 TRUE 8 4 0.150538 0.212635256 (0.253786811873+0j)1.5232 0.16

576 TRUE 4 2 0.161905 0.691812857 (0.585786437627+0j)0.653739612 0.64

586 TRUE 4 1 0.141509 0.29245283 (1+0j) 0.24 0.25

572 TRUE 4 3 0.166667 0.600995247 (0.585786437627+0j)1.037037037 0.49

579 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

577 TRUE 5 4 0.174757 0.356937409 (0.38196601125+0j) 2.132963989 0.25

564 TRUE 7 1 0.09901 0.273664671 (0.225377100496+0j)0.9184 0.25

580 TRUE 6 1 0.073684 0.406422117 (0.38196601125+0j) 0.465028355 0.36

580 TRUE 5 6 0.194175 0.356937409 (0.38196601125+0j) 2.132963989 0.25

585 TRUE 5 1 0.094737 0.552925039 (0.518805695908+0j)0.385487528 0.49

571 TRUE 5 6 0.153061 0.325259063 (0.38196601125+0j) 1.125 0.25

579 TRUE 5 3 0.122449 0.325259063 (0.38196601125+0j) 1.125 0.25
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579 TRUE 5 2 0.14433 0.418200929 (0.518805695908+0j)0.498866213 0.36

573 TRUE 5 3 0.122449 0.325259063 (0.38196601125+0j) 1.125 0.25

585 TRUE 5 3 0.205882 0.464840444 (0.518805695908+0j)1.375 0.36

579 TRUE 5 4 0.222222 0.504080734 (0.518805695908+0j)1.855955679 0.36

582 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

588 TRUE 4 2 0.156863 0.600995247 (0.585786437627+0j)1.037037037 0.49

569 TRUE 6 4 0.131313 0.230633378 (0.267949192431+0j)2.081632653 0.16

588 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

575 TRUE 3 2 0.210526 0.412672624 (1+0j) 1.259515571 0.16

579 TRUE 5 2 0.196078 0.268762013 (0.518805695908+0j)1.375 0.16

577 TRUE 5 5 0.141414 0.144298687 (0.38196601125+0j) 2.081632653 0.04

585 TRUE 5 1 0.142857 0.715049504 (0.38196601125+0j) 0.158730159 0.64

566 TRUE 5 2 0.112245 0.325259063 (0.38196601125+0j) 1.125 0.25

589 TRUE 4 1 0.193548 0.888289384 (0.585786437627+0j)0.121883657 0.81

579 TRUE 4 4 0.176471 0.600995247 (0.585786437627+0j)1.037037037 0.49

581 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

598 TRUE 5 3 0.205882 0.464840444 (0.518805695908+0j)1.375 0.36

585 TRUE 4 2 0.161905 0.691812857 (0.585786437627+0j)0.653739612 0.64

586 TRUE 5 8 0.213592 0.356937409 (0.38196601125+0j) 2.132963989 0.25

570 TRUE 4 4 0.176471 0.600995247 (0.585786437627+0j)1.037037037 0.49

568 TRUE 4 1 0.141509 0.29245283 (1+0j) 0.24 0.25

580 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

577 TRUE 5 5 0.184466 0.356937409 (0.38196601125+0j) 2.132963989 0.25
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580 TRUE 5 1 0.094737 0.552925039 (0.518805695908+0j)0.385487528 0.49

586 TRUE 8 2 0.131313 0.177371114 (0.198062264195+0j)0.691358025 0.16

585 TRUE 4 7 0.205882 0.600995247 (0.585786437627+0j)1.037037037 0.49

590 TRUE 5 6 0.194175 0.356937409 (0.38196601125+0j) 2.132963989 0.25

579 TRUE 5 1 0.142857 0.715049504 (0.38196601125+0j) 0.158730159 0.64

582 TRUE 4 3 0.166667 0.600995247 (0.585786437627+0j)1.037037037 0.49

569 TRUE 4 8 0.215686 0.600995247 (0.585786437627+0j)1.037037037 0.49

570 TRUE 5 3 0.122449 0.325259063 (0.38196601125+0j) 1.125 0.25

588 TRUE 4 2 0.156863 0.600995247 (0.585786437627+0j)1.037037037 0.49

587 TRUE 6 5 0.141414 0.230633378 (0.267949192431+0j)2.081632653 0.16

584 TRUE 4 6 0.196078 0.600995247 (0.585786437627+0j)1.037037037 0.49

583 TRUE 5 2 0.223301 0.424061401 (0.518805695908+0j)0.839002268 0.36

583 TRUE 4 1 0.174419 0.975917816 (0.585786437627+0j)0.24691358 0.81

580 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

594 TRUE 4 6 0.196078 0.600995247 (0.585786437627+0j)1.037037037 0.49

586 TRUE 6 2 0.12766 0.137018683 (0.324869129433+0j)2.46 0.04

578 TRUE 5 1 0.10101 0.536618514 (0.38196601125+0j) 0.612244898 0.49

584 TRUE 5 1 0.126316 0.543130199 (0.38196601125+0j) 0.385487528 0.49

580 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

584 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

585 TRUE 6 2 0.122449 0.322660655 (0.38196601125+0j) 1.289256198 0.25

585 TRUE 6 4 0.2 0.217322004 (0.38196601125+0j) 3 0.09

574 TRUE 5 1 0.10101 0.536618514 (0.38196601125+0j) 0.612244898 0.49
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581 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

575 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

590 TRUE 4 1 0.141509 0.29245283 (1+0j) 0.24 0.25

581 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

581 TRUE 4 2 0.161905 0.691812857 (0.585786437627+0j)0.653739612 0.64

585 TRUE 6 2 0.150442 0.212987464 (0.324869129433+0j)1.689981096 0.16

578 TRUE 4 3 0.157407 0.35890411 (1+0j) 2.033057851 0.04

590 TRUE 6 1 0.069307 0.281571102 (0.267949192431+0j)0.873345936 0.25

573 TRUE 5 8 0.213592 0.356937409 (0.38196601125+0j) 2.132963989 0.25

582 TRUE 4 1 0.141509 0.29245283 (1+0j) 0.24 0.25

587 TRUE 5 4 0.132653 0.325259063 (0.38196601125+0j) 1.125 0.25

590 TRUE 4 2 0.188119 0.353960396 (1+0j) 0.476454294 0.25

592 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

592 TRUE 6 2 0.09375 0.218555486 (0.324869129433+0j)1.140495868 0.16

586 TRUE 6 1 0.117117 0.457936812 (0.267949192431+0j)0.3936 0.49

575 TRUE 5 1 0.10101 0.536618514 (0.38196601125+0j) 0.612244898 0.49

585 TRUE 5 3 0.150943 0.329538833 (0.38196601125+0j) 1.625 0.25

582 TRUE 4 1 0.141509 0.29245283 (1+0j) 0.24 0.25

590 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

585 TRUE 6 4 0.131313 0.230633378 (0.267949192431+0j)2.081632653 0.16

588 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

587 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

583 TRUE 6 1 0.085106 0.303964424 (0.267949192431+0j)0.991735537 0.25
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581 TRUE 5 1 0.13 0.192 (1+0j) 0.165289256 0.16

578 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

590 TRUE 4 1 0.141509 0.29245283 (1+0j) 0.24 0.25

590 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

585 TRUE 7 5 0.151786 0.165711336 (0.321719649958+0j)2.527777778 0.09

578 TRUE 4 1 0.181818 0.869955872 (0.585786437627+0j)0.387811634 0.81

582 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

578 TRUE 5 4 0.132653 0.325259063 (0.38196601125+0j) 1.125 0.25

573 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

589 TRUE 6 4 0.17757 0.185823512 (0.324869129433+0j)2.734693878 0.09

588 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

573 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

585 TRUE 4 2 0.188119 0.353960396 (1+0j) 0.476454294 0.25

574 TRUE 5 5 0.138889 0.179349238 (0.518805695908+0j)2.033057851 0.04

588 TRUE 5 1 0.103774 0.50729257 (0.518805695908+0j)0.475206612 0.49

580 TRUE 4 1 0.181818 0.869955872 (0.585786437627+0j)0.387811634 0.81

579 TRUE 4 1 0.174419 0.975917816 (0.585786437627+0j)0.24691358 0.81

580 TRUE 4 2 0.156863 0.600995247 (0.585786437627+0j)1.037037037 0.49

583 TRUE 6 2 0.14433 0.171488913 (0.324869129433+0j)1.918367347 0.09

584 TRUE 7 1 0.052083 0.194961276 (0.198062264195+0j)1.166666667 0.16

568 TRUE 4 1 0.181818 0.869955872 (0.585786437627+0j)0.387811634 0.81

587 TRUE 3 1 0.207921 0.402640264 (1+0j) 0.14532872 0.36

585 TRUE 5 5 0.184466 0.356937409 (0.38196601125+0j) 2.132963989 0.25
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582 TRUE 4 2 0.161905 0.691812857 (0.585786437627+0j)0.653739612 0.64

588 TRUE 5 1 0.10101 0.536618514 (0.38196601125+0j) 0.612244898 0.49

584 TRUE 5 1 0.094737 0.552925039 (0.518805695908+0j)0.385487528 0.49

576 TRUE 5 2 0.138298 0.34322638 (0.518805695908+0j)0.875 0.25

588 TRUE 4 1 0.141509 0.29245283 (1+0j) 0.24 0.25

578 TRUE 6 1 0.142857 0.662976797 (0.485863070665+0j)0.125 0.64

578 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

587 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

576 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

584 TRUE 4 2 0.156863 0.600995247 (0.585786437627+0j)1.037037037 0.49

582 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

582 TRUE 5 2 0.141509 0.329538833 (0.38196601125+0j) 1.625 0.25

581 TRUE 5 2 0.138298 0.34322638 (0.518805695908+0j)0.875 0.25

580 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

577 TRUE 5 4 0.12963 0.267480847 (0.518805695908+0j)2.033057851 0.16

583 TRUE 7 3 0.133333 0.162096162 (0.267949192431+0j)2.111570248 0.09

593 TRUE 5 4 0.132653 0.325259063 (0.38196601125+0j) 1.125 0.25

578 TRUE 5 1 0.122222 0.586885112 (0.38196601125+0j) 0.625 0.49

575 TRUE 7 2 0.116505 0.293576612 (0.38196601125+0j) 1.0752 0.25

581 TRUE 5 4 0.174757 0.356937409 (0.38196601125+0j) 2.132963989 0.25

578 TRUE 4 2 0.161905 0.691812857 (0.585786437627+0j)0.653739612 0.64

590 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

588 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64
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580 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

576 TRUE 5 3 0.122449 0.325259063 (0.38196601125+0j) 1.125 0.25

579 TRUE 4 3 0.166667 0.600995247 (0.585786437627+0j)1.037037037 0.49

584 TRUE 6 2 0.111111 0.230633378 (0.267949192431+0j)2.081632653 0.16

584 TRUE 5 1 0.103774 0.50729257 (0.518805695908+0j)0.475206612 0.49

587 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

581 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

585 TRUE 6 3 0.145455 0.16844995 (0.324869129433+0j)2.181818182 0.09

577 TRUE 4 4 0.176471 0.600995247 (0.585786437627+0j)1.037037037 0.49

574 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

586 TRUE 4 3 0.166667 0.600995247 (0.585786437627+0j)1.037037037 0.49

585 TRUE 5 4 0.132653 0.325259063 (0.38196601125+0j) 1.125 0.25

578 TRUE 4 2 0.156863 0.600995247 (0.585786437627+0j)1.037037037 0.49

586 TRUE 5 1 0.10101 0.536618514 (0.38196601125+0j) 0.612244898 0.49

594 TRUE 5 2 0.141509 0.329538833 (0.38196601125+0j) 1.625 0.25

586 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

576 TRUE 7 2 0.117647 0.150416403 (0.321719649958+0j)1.677083333 0.09

582 TRUE 6 3 0.098214 0.277780859 (0.38196601125+0j) 1 0.25

571 TRUE 6 2 0.14433 0.171488913 (0.324869129433+0j)1.918367347 0.09

581 TRUE 5 2 0.141509 0.329538833 (0.38196601125+0j) 1.625 0.25

588 TRUE 4 2 0.156863 0.600995247 (0.585786437627+0j)1.037037037 0.49

572 TRUE 5 3 0.163043 0.304347826 (1+0j) 0.75 0.16

594 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64
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592 TRUE 6 2 0.14433 0.171488913 (0.324869129433+0j)1.918367347 0.09

580 TRUE 4 2 0.156863 0.600995247 (0.585786437627+0j)1.037037037 0.49

578 TRUE 4 6 0.196078 0.600995247 (0.585786437627+0j)1.037037037 0.49

584 TRUE 5 3 0.259259 0.632203883 (0.38196601125+0j) 0.578512397 0.64

587 TRUE 4 1 0.141509 0.29245283 (1+0j) 0.24 0.25

579 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

582 TRUE 4 1 0.14433 0.875815036 (0.585786437627+0j)0.299168975 0.81

581 TRUE 5 2 0.155963 0.403164156 (0.38196601125+0j) 1.179138322 0.36

577 TRUE 5 2 0.160377 0.433312418 (0.38196601125+0j) 1.625 0.36

575 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

581 TRUE 5 5 0.184466 0.356937409 (0.38196601125+0j) 2.132963989 0.25

579 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

578 TRUE 4 1 0.174419 0.975917816 (0.585786437627+0j)0.24691358 0.81

585 TRUE 6 3 0.131313 0.305692087 (0.485863070665+0j)0.737240076 0.25

582 TRUE 5 2 0.166667 0.464840444 (0.518805695908+0j)1.375 0.36

590 TRUE 6 1 0.085106 0.303964424 (0.267949192431+0j)0.991735537 0.25

577 TRUE 5 1 0.10101 0.536618514 (0.38196601125+0j) 0.612244898 0.49

581 TRUE 4 2 0.238938 0.684306562 (0.585786437627+0j)1.008310249 0.64

590 TRUE 6 2 0.14433 0.171488913 (0.324869129433+0j)1.918367347 0.09

577 TRUE 3 3 0.21875 0.465753425 (1+0j) 2.407407407 0.04

572 TRUE 4 1 0.14433 0.875815036 (0.585786437627+0j)0.299168975 0.81

580 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

569 TRUE 4 6 0.196078 0.600995247 (0.585786437627+0j)1.037037037 0.49
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572 TRUE 6 1 0.111111 0.281846292 (0.267949192431+0j)0.737240076 0.25

581 TRUE 6 2 0.108911 0.303235039 (0.438447187191+0j)0.873345936 0.25

575 TRUE 5 1 0.10101 0.536618514 (0.38196601125+0j) 0.612244898 0.49

594 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

586 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

593 TRUE 4 9 0.22549 0.600995247 (0.585786437627+0j)1.037037037 0.49

580 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

576 TRUE 4 4 0.176471 0.600995247 (0.585786437627+0j)1.037037037 0.49

578 TRUE 5 4 0.174757 0.356937409 (0.38196601125+0j) 2.132963989 0.25

572 TRUE 5 3 0.122449 0.325259063 (0.38196601125+0j) 1.125 0.25

580 TRUE 5 1 0.103774 0.50729257 (0.518805695908+0j)0.475206612 0.49

577 TRUE 4 2 0.139785 0.358762193 (0.585786437627+0j)1.440443213 0.25

570 TRUE 5 8 0.202128 0.34322638 (0.518805695908+0j)0.875 0.25

578 TRUE 6 2 0.12 0.211803511 (0.267949192431+0j)1.438016529 0.16

584 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

588 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

588 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

575 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

575 TRUE 5 4 0.132653 0.325259063 (0.38196601125+0j) 1.125 0.25

586 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

572 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

570 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

579 TRUE 5 2 0.224299 0.300756645 (0.38196601125+0j) 1.065759637 0.25
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586 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

585 TRUE 5 1 0.103774 0.50729257 (0.518805695908+0j)0.475206612 0.49

583 TRUE 4 2 0.161905 0.691812857 (0.585786437627+0j)0.653739612 0.64

569 TRUE 5 1 0.103774 0.50729257 (0.518805695908+0j)0.475206612 0.49

585 TRUE 4 1 0.181818 0.869955872 (0.585786437627+0j)0.387811634 0.81

587 TRUE 5 2 0.112245 0.325259063 (0.38196601125+0j) 1.125 0.25

580 TRUE 5 4 0.22549 0.592291425 (0.518805695908+0j)1.375 0.49

581 TRUE 6 1 0.085106 0.303964424 (0.267949192431+0j)0.991735537 0.25

579 TRUE 10 1 0.054348 0.118402613 (0.139194146888+0j)1.734693878 0.09

582 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

586 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

556 TRUE 6 3 0.1 0.211803511 (0.267949192431+0j)1.438016529 0.16

582 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

585 TRUE 4 6 0.196078 0.600995247 (0.585786437627+0j)1.037037037 0.49

585 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

575 TRUE 6 3 0.147059 0.156711707 (0.38196601125+0j) 1.677083333 0.09

580 TRUE 5 1 0.128713 0.533556089 (0.38196601125+0j) 0.725623583 0.49

577 TRUE 5 3 0.150943 0.329538833 (0.38196601125+0j) 1.625 0.25

594 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

584 TRUE 5 1 0.094737 0.552925039 (0.518805695908+0j)0.385487528 0.49

569 TRUE 5 1 0.103774 0.50729257 (0.518805695908+0j)0.475206612 0.49

586 TRUE 4 1 0.174419 0.975917816 (0.585786437627+0j)0.24691358 0.81

575 TRUE 4 3 0.166667 0.600995247 (0.585786437627+0j)1.037037037 0.49
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586 TRUE 4 1 0.174419 0.975917816 (0.585786437627+0j)0.24691358 0.81

574 TRUE 4 4 0.176471 0.600995247 (0.585786437627+0j)1.037037037 0.49

577 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

586 TRUE 4 1 0.14433 0.875815036 (0.585786437627+0j)0.299168975 0.81

585 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

584 TRUE 5 2 0.155963 0.403164156 (0.38196601125+0j) 1.179138322 0.36

581 TRUE 5 1 0.139785 0.714949111 (0.518805695908+0j)0.272108844 0.64

580 TRUE 5 1 0.103774 0.50729257 (0.518805695908+0j)0.475206612 0.49

552 TRUE 4 1 0.141509 0.29245283 (1+0j) 0.24 0.25

580 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

583 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

590 TRUE 5 1 0.139785 0.714949111 (0.518805695908+0j)0.272108844 0.64

571 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

592 TRUE 4 1 0.181818 0.869955872 (0.585786437627+0j)0.387811634 0.81

585 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

583 TRUE 3 2 0.269231 0.525641026 (1+0j) 0.65625 0.36

582 TRUE 4 1 0.174419 0.975917816 (0.585786437627+0j)0.24691358 0.81

573 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

592 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

576 TRUE 4 4 0.176471 0.600995247 (0.585786437627+0j)1.037037037 0.49

576 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

580 TRUE 5 2 0.11215 0.427603244 (0.518805695908+0j)1.065759637 0.36

576 TRUE 5 1 0.103774 0.50729257 (0.518805695908+0j)0.475206612 0.49
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588 TRUE 5 2 0.141509 0.329538833 (0.38196601125+0j) 1.625 0.25

578 TRUE 4 2 0.188119 0.353960396 (1+0j) 0.476454294 0.25

581 TRUE 4 3 0.166667 0.600995247 (0.585786437627+0j)1.037037037 0.49

571 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

576 TRUE 4 3 0.166667 0.600995247 (0.585786437627+0j)1.037037037 0.49

590 TRUE 5 2 0.112245 0.325259063 (0.38196601125+0j) 1.125 0.25

576 TRUE 4 4 0.176471 0.600995247 (0.585786437627+0j)1.037037037 0.49

572 TRUE 4 1 0.141509 0.29245283 (1+0j) 0.24 0.25

590 TRUE 4 1 0.130435 0.765691857 (0.585786437627+0j)0.543209877 0.64

592 TRUE 5 1 0.10101 0.536618514 (0.38196601125+0j) 0.612244898 0.49

584 TRUE 4 1 0.174419 0.975917816 (0.585786437627+0j)0.24691358 0.81

596 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

580 TRUE 5 6 0.153061 0.325259063 (0.38196601125+0j) 1.125 0.25

577 TRUE 4 4 0.32381 0.649376246 (0.585786437627+0j)1.813148789 0.49

580 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

580 TRUE 8 3 0.087912 0.215072679 (0.277406895678+0j)1.3184 0.16

592 TRUE 5 1 0.139785 0.714949111 (0.518805695908+0j)0.272108844 0.64

576 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

586 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

584 TRUE 4 5 0.186275 0.600995247 (0.585786437627+0j)1.037037037 0.49

581 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

585 TRUE 4 1 0.181818 0.869955872 (0.585786437627+0j)0.387811634 0.81

579 TRUE 4 3 0.166667 0.600995247 (0.585786437627+0j)1.037037037 0.49
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579 TRUE 5 3 0.219048 0.549675578 (0.518805695908+0j)0.952380952 0.49

571 TRUE 6 2 0.101852 0.21596245 (0.267949192431+0j)2.033057851 0.16

582 TRUE 3 2 0.210526 0.653939886 (1+0j) 1.259515571 0.49

588 TRUE 6 2 0.162162 0.234335232 (0.438447187191+0j)1.553875236 0.16

582 TRUE 5 2 0.157895 0.24 (1+0j) 0.385487528 0.16

588 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

581 TRUE 7 1 0.096154 0.258979093 (0.260322690258+0j)0.538461538 0.25

576 TRUE 4 2 0.156863 0.600995247 (0.585786437627+0j)1.037037037 0.49

575 TRUE 7 4 0.111111 0.145314926 (0.260322690258+0j)2.1875 0.09

573 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

588 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

577 TRUE 5 5 0.142857 0.325259063 (0.38196601125+0j) 1.125 0.25

581 TRUE 4 8 0.215686 0.600995247 (0.585786437627+0j)1.037037037 0.49

576 TRUE 4 4 0.176471 0.600995247 (0.585786437627+0j)1.037037037 0.49

574 TRUE 5 2 0.112245 0.325259063 (0.38196601125+0j) 1.125 0.25

585 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

582 TRUE 3 2 0.269231 0.525641026 (1+0j) 0.65625 0.36

578 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

581 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

583 TRUE 5 1 0.10101 0.536618514 (0.38196601125+0j) 0.612244898 0.49

585 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

582 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

584 TRUE 4 1 0.174419 0.975917816 (0.585786437627+0j)0.24691358 0.81
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586 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

578 TRUE 5 1 0.10101 0.536618514 (0.38196601125+0j) 0.612244898 0.49

586 TRUE 3 1 0.207921 0.402640264 (1+0j) 0.14532872 0.36

583 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

573 TRUE 4 5 0.186275 0.600995247 (0.585786437627+0j)1.037037037 0.49

584 TRUE 5 1 0.122222 0.586885112 (0.38196601125+0j) 0.625 0.49

584 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

583 TRUE 4 5 0.186275 0.600995247 (0.585786437627+0j)1.037037037 0.49

589 TRUE 3 1 0.202128 0.475177305 (1+0j) 0.3046875 0.36

568 TRUE 4 1 0.12381 0.691812857 (0.585786437627+0j)0.653739612 0.64

587 TRUE 5 3 0.150943 0.329538833 (0.38196601125+0j) 1.625 0.25

592 TRUE 4 3 0.272727 0.306753507 (0.585786437627+0j)1.855955679 0.16

572 TRUE 4 2 0.188119 0.353960396 (1+0j) 0.476454294 0.25

585 TRUE 4 1 0.174419 0.975917816 (0.585786437627+0j)0.24691358 0.81

567 TRUE 4 1 0.14433 0.875815036 (0.585786437627+0j)0.299168975 0.81
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Table C.3: Computation results on Ĝs which do not sat-

isfied theorem 2.2.2

Ĝn
1HG

b
2 HG

n
3 sTQs ν

ε n2

yT s
+αθ

n+θ
α θ ε

591 TRUE 6 5 0.23 0.186149062 (0.438447187191+0j)3 0.04

584 TRUE 6 4 0.17308 0.155081226 (0.324869129433+0j)3.36 0.04

570 TRUE 16 5 0.13208 0.085600818 (0.150331459494+0j)7.474048 0.04

568 TRUE 8 5 0.12621 0.09642005 (0.238442818168+0j)2.5472 0.04

576 TRUE 8 6 0.28421 0.119405531 (0.318669356395+0j)3.03155 0.04

586 TRUE 6 4 0.17308 0.155081226 (0.324869129433+0j)3.36 0.04

575 TRUE 5 4 0.30612 0.259019445 (0.518805695908+0j)2.82 0.09

583 TRUE 3 1 0.27835 0.264604811 (1+0j) 0.020761 0.25

580 TRUE 6 5 0.2233 0.196776673 (0.38196601125+0j) 2.408163 0.09

571 TRUE 9 6 0.17476 0.078612387 (0.186230723133+0j)2.444444 0.04

592 TRUE 7 5 0.17708 0.140571084 (0.38196601125+0j) 2.666667 0.04

590 TRUE 7 5 0.14 0.109544934 (0.225377100496+0j)3.123967 0.04

588 TRUE 3 1 0.27835 0.264604811 (1+0j) 0.020761 0.25

584 TRUE 7 6 0.14679 0.118873016 (0.267949192431+0j)3.096408 0.04

586 TRUE 5 4 0.30189 0.239384855 (0.518805695908+0j)3.179012 0.04

577 TRUE 6 3 0.24719 0.202348897 (0.485863070665+0j)2.875346 0.04

579 TRUE 8 5 0.17925 0.156811451 (0.277406895678+0j)6.016529 0.04

583 TRUE 7 4 0.15625 0.114495038 (0.260322690258+0j)2.719008 0.04

1Number of nodes in Ĝ
2Is the subgraph H of G bipartite?
3Number of nodes in HG
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583 TRUE 6 5 0.18269 0.155081226 (0.324869129433+0j)3.36 0.04

585 TRUE 6 6 0.19231 0.155081226 (0.324869129433+0j)3.36 0.04

587 TRUE 6 4 0.17308 0.155081226 (0.324869129433+0j)3.36 0.04

590 TRUE 6 4 0.21296 0.180003744 (0.38196601125+0j) 2.033058 0.09

583 TRUE 9 6 0.16364 0.119189674 (0.198062264195+0j)6.46875 0.04

582 TRUE 6 4 0.17308 0.155081226 (0.324869129433+0j)3.36 0.04

583 TRUE 7 7 0.28713 0.154649843 (0.260322690258+0j)2.355388 0.09

577 TRUE 7 3 0.13043 0.116902406 (0.295532185741+0j)2.31405 0.04

582 TRUE 11 7 0.21359 0.091931397 (0.206021483244+0j)3.819263 0.04

574 TRUE 6 4 0.14019 0.139094541 (0.324869129433+0j)2.734694 0.04

575 TRUE 13 4 0.11458 0.06677337 (0.139880203735+0j)2.84375 0.04

569 TRUE 4 3 0.21053 0.203860797 (0.585786437627+0j)1.755102 0.04

582 TRUE 8 8 0.19588 0.121092739 (0.250882452253+0j)3.73535 0.04

581 TRUE 8 4 0.14141 0.12123063 (0.24340174614+0j) 3.977316 0.04

562 TRUE 7 5 0.16964 0.141391251 (0.398320868117+0j)2.527778 0.04

581 TRUE 8 7 0.19626 0.126521406 (0.198062264195+0j)7.383743 0.04

587 TRUE 8 10 0.21569 0.190844016 (0.198062264195+0j)1.656805 0.16

582 TRUE 7 4 0.11881 0.09634671 (0.225377100496+0j)2.355388 0.04

586 TRUE 7 4 0.17143 0.156308112 (0.295532185741+0j)4.666667 0.04

579 TRUE 6 3 0.16346 0.134648428 (0.267949192431+0j)3.36 0.04

575 TRUE 13 5 0.24 0.072788319 (0.106562037619+0j)5.777778 0.04

583 TRUE 7 3 0.16667 0.130698111 (0.260322690258+0j)3.933884 0.04

574 TRUE 9 4 0.14 0.105545902 (0.120614758428+0j)1.331633 0.09
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578 TRUE 6 5 0.26786 0.144169911 (0.267949192431+0j)4.08 0.04

585 TRUE 8 5 0.17 0.110247087 (0.250882452253+0j)3.111111 0.04

592 TRUE 7 4 0.15625 0.131671569 (0.321719649958+0j)2.719008 0.04

586 TRUE 7 4 0.17143 0.156308112 (0.295532185741+0j)4.666667 0.04

583 TRUE 5 5 0.19444 0.191318984 (0.38196601125+0j) 3.933884 0.04

576 TRUE 7 8 0.20952 0.142224314 (0.260322690258+0j)4.666667 0.04

573 TRUE 7 4 0.12844 0.118873016 (0.267949192431+0j)3.096408 0.04

586 TRUE 7 5 0.17308 0.146290652 (0.321719649958+0j)3.528926 0.04

586 TRUE 8 4 0.10204 0.090267663 (0.186393497352+0j)2.888889 0.04

574 TRUE 7 3 0.12 0.109544934 (0.225377100496+0j)3.123967 0.04

590 TRUE 8 5 0.13636 0.110181146 (0.213682265271+0j)4.222222 0.04

588 TRUE 7 4 0.17143 0.117320144 (0.198062264195+0j)4.666667 0.04

578 TRUE 10 6 0.17308 0.075056093 (0.148665376528+0j)3.265306 0.04

583 TRUE 8 4 0.11 0.092190179 (0.186393497352+0j)3.111111 0.04

577 TRUE 9 6 0.14423 0.097290945 (0.211785863843+0j)3.461538 0.04

578 TRUE 13 8 0.20792 0.094673331 (0.153190854822+0j)7.296076 0.04

583 TRUE 8 4 0.16981 0.146672641 (0.253786811873+0j)6.016529 0.04

579 TRUE 6 11 0.24038 0.155081226 (0.324869129433+0j)3.36 0.04

568 TRUE 7 8 0.19792 0.131671569 (0.321719649958+0j)2.719008 0.04

577 TRUE 8 4 0.14141 0.106174717 (0.198062264195+0j)3.977316 0.04

579 TRUE 6 7 0.16 0.124352169 (0.267949192431+0j)3.123967 0.04

584 TRUE 7 4 0.25743 0.239414565 (0.321719649958+0j)2.355388 0.16
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Table C.4: Computation results on Ĝ from Yeast protein-

protein interaction network which satisfied the theorem

2.2.2

Ĝn
1 HG

b
2 HG

n
3 sTQs ν

ε n2

yT s
+αθ

n+θ
α θ ε

2224TRUE 8 1 0.068965517 0.168103448 (1+0j) 0.248888889 0.16

2224TRUE 7 1 0.08 0.194285714 (1+0j) 0.24852071 0.16

2224TRUE 7 1 0.112244898 0.510596605 (0.726927136932+0j)0.103550296 0.49

2224TRUE 4 1 0.141509434 0.29245283 (1+0j) 0.24 0.25

2224TRUE 4 1 0.141509434 0.29245283 (1+0j) 0.24 0.25

2224TRUE 4 1 0.141509434 0.29245283 (1+0j) 0.24 0.25

2224TRUE 4 1 0.193548387 0.888289384 (0.585786437627+0j)0.121883657 0.81

2224TRUE 5 4 0.18627451 0.464840444 (0.518805695908+0j)1.375 0.36

2224TRUE 5 10 0.239130435 0.304347826 (1+0j) 0.75 0.16

2224TRUE 3 15 0.396039604 0.857673555 (1+0j) 17.6736 0.04

2224TRUE 4 3 0.333333333 0.395112016 (1+0j) 1.440443213 0.16

2224TRUE 3 5 0.336633663 0.613861386 (1+0j) 1.04 0.36

1Number of nodes in Ĝ
2Is the subgraph H of G bipartite?
3Number of nodes in HG
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Table C.5: Computation results on Ĝ from Yeast protein-

protein interaction network which satisfied the theorem

2.2.2

Ĝn
1 HG

b
2 HG

n
3 sTQs ν

ε n2

yT s
+αθ

n+θ
α θ ε

2224TRUE 5 1 0.172414 0.144828 (1+0j) 0.034722 0.16

2224TRUE 7 12 0.238532 0.192908 (0.295532185741+0j)10.1024 0.04

2224TRUE 8 9 0.264706 0.191302 (0.373801931473+0j)5.487603 0.04

2224TRUE 3 1 0.278351 0.264605 (1+0j) 0.020761 0.25

2224TRUE 7 9 0.300971 0.20688 (0.38196601125+0j) 6.48 0.04

2224TRUE 3 1 0.278351 0.264605 (1+0j) 0.020761 0.25

2224TRUE 3 1 0.278351 0.264605 (1+0j) 0.020761 0.25

2224TRUE 4 7 0.320755 0.286913 (0.585786437627+0j)3.179012 0.04

2224TRUE 6 11 0.356436 0.231372 (0.267949192431+0j)2.244898 0.16

2224TRUE 7 9 0.366667 0.27619 (1+0j) 2.11157 0.04

2224TRUE 6 13 0.408602 0.227148 (0.38196601125+0j) 5.584775 0.04

2224TRUE 6 10 0.425926 0.277045 (0.438447187191+0j)8.75 0.04

2224TRUE 4 9 0.460674 0.367978 (1+0j) 0.927336 0.16

2224TRUE 3 3 0.460674 0.362996 (1+0j) 0.927336 0.16

2224TRUE 5 5 0.446602 0.310478 (0.518805695908+0j)2.132964 0.16

1Number of nodes in Ĝ
2Is the subgraph H of G bipartite?
3Number of nodes in HG
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