
Re-usability and Robustness of Python and Java programs

Debdas Paul
Department of Computer Science and Engineering

Lehigh University
Bethlehem, USA

Email: dep411@lehigh.edu

Sourabh Vartak
Department of Computer Science and Engineering

Lehigh University
Bethlehem, USA

Email: sjv211@lehigh.edu

Abstract—“Re-usability” is one of the fundamental aspects
of software development. Re-usability of code enables us to
add new functionality with minimum modifications. A module
or class which is reusable reduces the implementation time
and cost of maintenance. In this paper we investigate and
compare the re-usability of Python and Java programs using
graph theoretic approach. We define a metric to quantify re-
usability. Using the metric, we show that Python projects are
more reusable than Java, which supports the design goal of
Python. Apart from re-usability, we also address the question of
“Robustness” for software programs. We cannot test robustness
by removing nodes or edges from software dependency graph
because removal of any nodes results into software crash.
This makes the task more challenging. Therefore, we redefine
robustness for software programs. We also define a metric to
quantify robustness and compare Python and Java projects
using the metric. We show that, Java programs are more robust
than that of Python against random failure.

Keywords-Python; Java; Graph Theory; Re-usability; Ro-
bustness.

I. PROJECT OVERVIEW

Re-usability of a segment of source code measures like-
lihood of its future use with slight modification or with no
modification at all (http://en.wikipedia.org/wiki/Reusability).
A module or class which is reusable reduces the implemen-
tation time and cost of maintenance. Therefore, a software
must be designed in such way so as to increase its re-
usability. Object-oriented languages like Java have been de-
signed to promote re-usability [1]. Now, the interesting sce-
nario happens in case of languages like Python. Python sup-
ports multiple programming paradigms like object-oriented,
imperative and, to some extent, functional programming.
Moreover, Python programming language design empha-
sizes on code readability and code readability increases re-
usability. Now, the question is whether Python code is more
reusable due to better readability. We propose to find the
answer by comparing structural properties of dependency
graph of Java and Python modules. If a module is less
dependent on other modules, then that module is said to
be more reusable. In terms of dependency graph, the greater
the out-degree than in-degree of a module, the more reusable
the module is. If Python comes out to be more re-usable than
Java, then it also has implications on writing readable codes.

Recent studies show that geometry1 of object oriented
programming is “scale-free” in nature [2], [3]. A scale-
free network is a network whose degree distribution follows
a power law asymptotically (http://en.wikipedia.org/wiki/
Scale-free network). Mathematically, if a fraction of node
P (k) of nodes in the network having k connections to other
nodes goes for large values of k as

P (k) ∼ ck−γ

, where where c is a normalization constant and γ is a
parameter whose value is typically in the range 2 < γ < 3.
The value of γ may lie outside the bounds. For example,
Barabasi-Albert model of graph follows power law with
γ = 3. Random graphs do not follow power law [4].
One of the important properties of scale-free network is
that, it is robust against random failure [4]. Random failure
happens when nodes other than the hubs are attacked. But,
in case of object-oriented software, we need to redefine
“Robustness” because if any node/module, whether it is
hub or not, fails then the entire system fails. Therefore,
instead of removing a node/module here, we can think about
the extend of effect due to some external modification in
that node/module. The longer the effect propagates, the less
robust is the network with respect to that node/module. Note
that, scale-free networks are robust against random failure,
but not against targeted failure (where the hubs are directly
attacked) [4].

To our knowledge, robustness for software programs has
not quantified yet. Therefore, first we propose to investigate
the dependency graph of Python modules in large open
source project(s) to see whether it is scale-free or not and
then define a metric for measuring the robustness of the
same. Using our metric, we show that Java projects are more
robust than that of Python against random failure.

II. MATERIALS AND METHODS

A. Open Source projects

We use four open source projects. Two of them are
from Java and other two are from Python. The projects

1Here the geometry means the network of dependency between classes
and modules

are comparable in terms of task they perform. For Java
we choose Google Web Toolkit and BioJava. For Python
we choose, Pyjamas and BioPython. Below is the short
description of each of these.

1) Google Web Toolkit: It is a open source Java software
development framework for writing AJAX based applica-
tions like Google Maps and Gmail (http://code.google.com/
webtoolkit/).

2) Pyjamas: It is Rich Application Development frame-
work for both Web ad Desktop. It contains a Python-to-
Javascript compiler which is an AJAX framework and a
Widget Set API (http://pyjs.org/).

3) BioJava: BioJava is an open-source project in Java
for processing biological data. It provides analytical and
statistical routines, parsers for common file formats and
allows the manipulation of sequences and 3-D structures
(http://biojava.org/wiki/Main Page)

4) BioPython: BioPython is an open source Python
framework for biological data analysis (http://biopython.org/
wiki/Main Page).

B. Softwares for creating dependency graph

1) For python: We use “snakefood” (http://furius.ca/
snakefood/) for creating dependency graph for Python
projects. We choose this software based on the following
reasons: 1) It uses Abstract Syntax Trees for parsing the
Python files which is reliable and easy to use. 2) It does
not load modules while calculating dependency graph. 3)
It finds all the files in a directory recursively. No need for
explicit declaration of files. 4) It can follow dependencies
by enabling “–follow” option in the command line. (5) It
supports UNIX command line features. We can easily join
the commands using pipes.

2) For Java: We use “JDep-Grapher” (https://github.com/
Kdecherf/jdep-grapher) for creating dependency graph for
Java projects. We choose this software based on the fol-
lowing reasons: 1) It is a simple Bash tool for generating
dependency graphs. 2) Given a source code directory as
input, it recursively finds and parses all Java files in all the
sub-directories. 3) Since it is a simple shell script, it supports
UNIX command line features like redirection to output file.

C. Software for analysis

We use “NetwokX” module for analysis of dependency
graphs. NetworkX is a powerful module in Python for
creation, manipulation and analysis of complex networks
(http://networkx.lanl.gov/).

D. Methods

We use the following steps for analysis of re-usability and
robustness in Java and Python projects.

1) Generation of Python dependency graphs: We down-
load all the six versions so far developed for Pyjamas.
For BioPython, we choose six versions uniformly over all
versions so that, we can get significant variations. Below is
the table which shows the version and its size.

Version Number of Python files
0.3 182
0.4 254
0.5 384
0.6 586
0.7 874
0.8 1236

Table I: Size of versions of Pyjamas

Version Number of Python files
1.10 417
1.30 527
1.44 565
1.48 565
1.55 467
1.57 436

Table II: Size of versions of BioPython

We generate dependency graph using the following com-
mand line for Python projects:

sfood --ignore-unused --follow <project>
| sfood-graph | dot > <project>.dot

“–ignore-unused” option eliminates dependencies moti-
vated by symbols imported but not used. “–follow” option
allow sfood to follow dependencies recursively. At the end of
this pipeline we get a .dot file. We then convert the .dot file
to Python graph data structure using NetworkX for further
analysis.

2) Generation of Java dependency graphs: We download
six recent versions of the Google Web Toolkit. Similarly, for
BioJava, we choose six versions uniformly over all versions
so that, we can get significant variations. For generating
dependency graph for Java projects, we use the following
command line:

jdep-grapher.sh <project.dot>
<project_src_dir>

Version Number of Java files
1.4.62 468
1.7.1 960
2.0.0 1230
2.1.0 1943
2.2.0 2355
2.4.0 3041

Table III: Size of versions of Google Web Toolkit

We have modified the jdep-grapher shell script so that it
does not generate the PNG image file for the dependency

Version Number of Java files
1.6.1 1405
1.7.0 1462
1.7.1 1476
1.8.1 1467
3.0.1 526
3.0.2 600

Table IV: Size of versions of BioJava

graph. For large dependency graphs, as in our case, the
JDep-grapher tool becomes unresponsive when generating
the PNG image file. So, using modified jdep-grapher script,
we only create the DOT file which will be used in our
analysis.

III. RESULTS

A. Reusability

We know that a module or code is more reusable in term
dependency graph if out-degree of a node is much more
higher than in-degree of that node. Ideally, more the amount
of 0 in-degree nodes in a dependency graph of a module,
more the percentage of reusable code in that module. We
can define a metric of “AReuse”

AReuseX =

∑V
i=1Ni∑V

i=1 TotNi
(1)

, where Ni is the total number of nodes in a version i for
which out-degree is greater than in-degree; TotNi is the
total number of nodes in version i and X is the project. If
AReuseX is greater than AResueY , then we can say that X
contains more reusable codes than Y . Below is the AReuse
values for Java and Python projects.

Project AReuse
GWT 0.09
PyJamas 0.47
BioJava 0.11
BioPython 0.59

Table V: Average re-usability of Python and Java projects.
It is clear from the above data that Python has more re-
usability than Java

From Table V, it is clear that Python projects are much
more reusable than Java. Python is designed to be more
readable and also “As an object-oriented language, Python
aims to encourage the creation of reusable code” (http://
www.python.org/doc/essays/foreword/). This, we verify the
greater re-usability of Python code.

B. Robustness

For software programs we have to define the robustness
in terms of extent of the effect of modifiability. There are
two types of robustness: robustness against random failure
and robustness against targeted failure/attack. Scale-free
networks are generally robust against random failure because

of large number of low degree nodes. Random graphs are
more robust against targeted failure. From analysis, we get
that the in-degree and out-degree distribution follow power
law asymptotically, which means the over all dependency
graph is a directed scale-free network. Below is an example
of BioJava in-degree distribution which follows power law.

Figure 1: Above figure shows the difference between scale-
free networks (in blue and red) and a random graph (Erdos-
Renyi, in yellow). Random graph does not follow power
law degree distribution asymptotically. Red line represents
the in-degree distribution of BioJava network which is scale-
free. The same holds for other Python and Java projects too.

To prove the scale-freeness, we generate 100 random scale
free directed graphs using NetworkX for each of the projects.
We take the average number of nodes across all the versions
of a project for generating the corresponding random scale
free graph. We investigate the tail of the graphs and find the
average value of exponent γ corresponding to each project.
Note that, this γ is not the actual γ for a project. We calculate
the actual γ separately for each projects.

Scale free graph for
corresponding project

Number of nodes in
each of the 100 scale
free graphs

γinavg γoutavg

GWT 1060 1.755 2.078
PyJamas 745 1.733 2.044
BioJava 844 1.741 2.055
BioPython 958 1.75 2.076

Table VI: Power law statistics for randomly generated scale
free directed graphs

Versions for BioJava Number of nodes γin γout

biojava-1.6.1 890 1.9 2
biojava-1.7.0 967 1.9 1.9
biojava-1.7.1 968 1.9 1.9
biojava-1.8.1 907 1.8 1.9
biojava-3.0.1 635 2 1.9
biojava-3.0.2 699 2 1.9

Table VII: Power law statistics for BioJava

Comparing Table VI with Tables VII, VIII, IX and X,
we can conclude that the projects are scale free nature. If
a network is scale-free, it is robust against random failure

Versions for BioPy-
thon

Number of nodes γin γout

bio1.10 737 1.9 2.4
bio1.30 854 1.9 2.5
bio1.44 894 1.9 2.5
bio1.48 894 1.9 2.5
bio1.55 1184 1.9 2.1
bio1.57 1187 1.9 2.1

Table VIII: Power law statistics for BioPython

Versions for GWT Number of nodes γin γout

gwt-user-1.4.62 276 2.2 1.9
gwt-user-1.7.1 561 2.1 1.8
gwt-user-2.0.0 964 2.0 2.0
gwt-user-2.1.0 1335 2.3 2.0
gwt-user-2.2.0 1432 2.3 2.0
gwt-user-2.4.0 1793 2.3 2.0

Table IX: Power law statistics for Google Web Toolkit

Versions for Pyjamas Number of nodes γin γout

py0.3 337 1.9 2.1
py0.4 395 1.9 2.1
py0.5 544 1.9 2.2
py0.6 778 1.9 2.6
py0.7 1064 2.0 2.6
py0.8 1357 2.0 2.5

Table X: Power law statistics for Pyjamas

[5]. Now the question is which one is more robust against
random failure : Java or Python. Here, we create a new
metric : Average Robustness or AR

ARX =

∑V
i=1

N
vi
1in

N
vi
1out

V
(2)

, where V is the number of versions in X . X may be one of
the open source projects. If ARX > ARY , X is more robust
than Y against random failure. The reason is that, if we
choose randomly a node in X , the probability of getting 1-in
degree node is much more higher compare to that in version
Y and any modification on that node does not propagate to
any other nodes. Therefore, extent of random modifiability
in case of version X is less than Y . Another question one

Project AR
GWT 126.7
PyJamas 2.0
BioJava 206.5
BioPython 2.3

Table XI: Measurement of average robustness against ran-
dom failure/modification

might ask why don’t we consider 0-in-degree or 0 out-degree
nodes. The reason is that a hub node can be a 0-in-degree
or 0-out-degree node. But, here we do not consider hubs as
we are considering robustness against random failure. From
the Table XI, it is clear that robustness of Java code against
random failure is much more higher than that of Python.

IV. CONCLUSION

In this work, we define measures for re-usability and
robustness of software programs. We verify it for Python and
Java projects. We see Python projects contain more reusable
codes and it supports the design principle of Python. Java is
more robust against random failures. We still do not know
the relation between re-usability and robustness. We keep
this for future work.

ACKNOWLEDGMENT

The authors would like to thank Prof. Gang Tan of Depart-
ment of Computer Science and Engineering, Lehigh Univer-
sity, USA for giving valuable comments while preparing this
document. The authors would also like to thank Dr. Alex
Potanin, Senior Lecturer in Software Engineering School
of Engineering and Computer Science Victoria University
of Wellington, New Zealand; Dr Ewan Tempero, Associate
Professor in Computer Science Department of Computer
Science, University of Auckland for helping in materializing
this idea.

REFERENCES

[1] B. Foote and R. Johnson, “Designing reusable classes,” Journal
of Object Oriented Programming, vol. 1, no. 2, pp. 22–35,
1988.

[2] A. Potanin, J. Noble, M. Frean, and R. Biddle, “Scale-free
geometry in oo programs,” Communications of the ACM,
vol. 48, no. 5, pp. 99–103, 2005.

[3] C. Myers, “Software systems as complex networks: Structure,
function, and evolvability of software collaboration graphs,”
Physical Review E, vol. 68, no. 4, p. 046116, 2003.

[4] N. Ganguly, A. Deutsch, and A. Mukherjee, Dynamics On
and Of Complex Networks: Applications to Biology, Computer
Science, and the Social Sciences. Birkhauser, 2009.

[5] J. Guillaume, M. Latapy, and C. Magnien, “Comparison of
failures and attacks on random and scale-free networks,” Prin-
ciples of Distributed Systems, pp. 900–900, 2005.

