

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三・ のへで

Kolmogorov's Theorems

Debdas Paul

Institute for Systems Theory and Automatic Control

University of Stuttgart

debdas.paul@ist.uni-stuttgart.de

June 8, 2015

Overview

1 A.N. Kolmogorov- A short biography

- 2 Kolmogorov's Theorems
- 3 Theoretical backgrounds, theorems and example

Inventor of Modern Probability Theory

• Full name: Andrey Nikolaevich Kolmogorov

- 20th century Soviet mathematician
- Known for: Probability theory (axiomatic foundations), topology, Mathematical analysis, classical mechanics, algorithmic information theory, computational complexity and many more

Once his one of the students Vladimir Arnold has said:

"Kolmogorov - Poincaré - Gauss - Euler - Newton, are only five lives separating us from the source of our science"

Statistics

isto

Kolmogorov-Smirnov test

Probability theory

- Hahn-Kolmogorov theorem
- Kolmogorov existence theorem
- Kolmogorov continuity theorem
- Kolmogorov's three-series theorem
- Kolmogorov's zero-one law

• Statistics

 Kolmogorov-Smirnov test→Nonparametric test; CDF(known) -ECDF

Probability theory

- Hahn-Kolmogorov theorem
- Kolmogorov existence theorem
- Kolmogorov continuity theorem
- Kolmogorov's three-series theorem
- Kolmogorov's zero-one law

isto

• Statistics

isto

 Kolmogorov-Smirnov test→Nonparametric test; CDF(known) -ECDF

Probability theory

- Hahn-Kolmogorov theorem→Extending a function to a measure
- Kolmogorov existence theorem
- Kolmogorov continuity theorem
- Kolmogorov's three-series theorem
- Kolmogorov's zero-one law

• Statistics

isto

 Kolmogorov-Smirnov test→Nonparametric test; CDF(known) -ECDF

Probability theory

- Hahn-Kolmogorov theorem→Extending a function to a measure
- Kolmogorov existence theorem→When a collection of Finite Dimensional Distributions defines a Stochastic process
- Kolmogorov continuity theorem
- Kolmogorov's three-series theorem
- Kolmogorov's zero-one law

Statistics

 Kolmogorov-Smirnov test→Nonparametric test; CDF(known) -ECDF

Probability theory

- Hahn-Kolmogorov theorem→Extending a function to a measure
- Kolmogorov existence theorem→When a collection of Finite Dimensional Distributions defines a Stochastic process
- Kolmogorov continuity theorem→criterion for the existence of a continuous modification in a stochastic process
- Kolmogorov's three-series theorem
- Kolmogorov's zero-one law

isto

• Statistics

isto

 Kolmogorov-Smirnov test→Nonparametric test; CDF(known) -ECDF

Probability theory

- Hahn-Kolmogorov theorem→Extending a function to a measure
- Kolmogorov existence theorem→When a collection of Finite Dimensional Distributions defines a Stochastic process
- Kolmogorov continuity theorem→criterion for the existence of a continuous modification in a stochastic process
- Kolmogorov's three-series theorem →Iff condition for the almost sure convergence of an infinite series of random variables
- Kolmogorov's zero-one law

Statistics

isto

 Kolmogorov-Smirnov test→Nonparametric test; CDF(known) -ECDF

Probability theory

- Hahn-Kolmogorov theorem→Extending a function to a measure
- Kolmogorov existence theorem→When a collection of Finite Dimensional Distributions defines a Stochastic process
- Kolmogorov continuity theorem→criterion for the existence of a continuous modification in a stochastic process
- Kolmogorov's three-series theorem →Iff condition for the almost sure convergence of an infinite series of random variables
- Kolmogorov's zero-one law $\rightarrow Tail$ event has probability of either 0 or 1

Kolmogorov's Theorems cont.

◆□▶◆□▶◆目▶◆目▶ 目 のへで

5/16

• Probability theory

- Chapman-Kolmogorov equations
- Kolmogorov's inequality

• Functional analysis

• Fréchet-Kolmogorov theorem

Kolmogorov's Theorems cont.

• Probability theory

• Chapman-Kolmogorov equations→n-step transition probabilities in a Markov chain

<ロ>

Kolmogorov's inequality

• Functional analysis

• Fréchet-Kolmogorov theorem

Kolmogorov's Theorems cont.

Probability theory

- Chapman-Kolmogorov equations→n-step transition probabilities in a Markov chain
- Kolmogorov's inequality→Bound on the probability of partial sums of finite collection of independent R.Vs

<ロ>

• Functional analysis

• Fréchet-Kolmogorov theorem

• Probability theory

- Chapman-Kolmogorov equations→n-step transition probabilities in a Markov chain
- Kolmogorov's inequality→Bound on the probability of partial sums of finite collection of independent R.Vs

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

• Functional analysis

 Fréchet-Kolmogorov theorem→lff condition for a set of functions to be relatively compact in an L^p space

0

Probability theory

- Chapman-Kolmogorov equations→n-step transition probabilities in a Markov chain
- Kolmogorov's inequality→Bound on the probability of partial sums of finite collection of independent R.Vs

• Functional analysis

 Fréchet-Kolmogorov theorem→lff condition for a set of functions to be relatively compact in an L^p space

Here, we will elaborate the followings:

- Kolmogorov's existence theorem
- Kolmogorov's continuity theorem

Reason: Fundamental to Stochastic process

σ - algebra

Let Ω be a set. A σ - algebra on Ω is a collection of subsets \mathcal{F} of Ω which obeys the following properties:

- $\phi \in \mathcal{F}$
- **2** If $F \in \mathcal{F}$, then also $F^c \in \mathcal{F}$
- $\bullet \ \ \mathsf{If} \ \ A_1, A_2, ... \in \mathcal{F}, \ \mathsf{then} \ \cup_{n=1}^\infty A_n \in \mathcal{F}$

 (Ω, \mathcal{F}) is called a measurable space. A probability measure P on a measurable space (Ω, \mathcal{F}) is a function $P : \mathcal{F} \to [0, 1]$ s.t.

9
$$P(\phi) = 0, P(\Omega) = 1$$

2 If $A_1, A_2, ... \in \mathcal{F}$, and $\{A_i\}_{i=1}^{\infty}$ are pairwise disjoint then

$$P\left(\bigcup_{i\in 1}A_i\right)=\sum_{i\in I}P(A_i)$$

▲□▶▲□▶▲≣▶▲≣▶ ≣ の�� 6/16

- The triple (Ω, \mathcal{F}, P) is called a probability space
- The subsets F of Ω which belong to F are called F-measurable sets. In a probability context these sets are called *events*
- Given any family \mathcal{U} of subsets of Ω there is a smallest σ -algebra algebra $\mathcal{H}_{\mathcal{U}}$ containing \mathcal{U} , namely

$$\mathcal{H}_{\mathcal{U}} = \bigcap \{\mathcal{H}; \mathcal{H}\sigma - \mathsf{algebra} \text{ of } \Omega, \mathcal{U} \subset \mathcal{H} \}$$

Mathematicaly, $\mathcal{H}_{\mathcal{U}}$ is the $\sigma\text{-algebra}$ generated by $\mathcal U$

Example

Let, $\mathcal{U} = \text{collection of all open subsets of a topological space } \Omega$ (e.g. $\Omega = \mathcal{R}^n$), then $\mathcal{B} = \mathcal{H}_{\mathcal{U}}$ is called the Borel σ -algebra on Ω and the elements $B \in \mathcal{B}$ are called Borel sets. \mathcal{B} contains all open sets, all closed sets, all countable unions of closed sets, all countable intersections of such countable unions etc.

\mathcal{F} -measurable function

If (Ω, \mathcal{F}, P) is a given probability space, then a function $Y : \Omega \to \mathcal{R}^n$ is called \mathcal{F} -measurable if

$$Y^{-1}(U)=\{\omega\in \Omega;\,Y(\omega)\in U\}\in \mathcal{F}$$

For all open sets $U \in \mathcal{R}^n$ (or, equivalently, for all Borel sets $U \subset \mathcal{R}^n$)

A random variable X is an \mathcal{F} -measurable function $X : \Omega \to \mathcal{R}^n$. Every random variable induces a probability measure μ_X on \mathcal{R}^n , defined by $\mu_X(B) = P(X^{-1}(B)) \cdot \mu_X$ is called the distribution of X

Stochastic Process

Definition

A stochastic process is parameterized collection of random variables

 $\{X_t\}_{t\in T}$

defined on a probability space (Ω, \mathcal{F}, P) and assuming values in \mathcal{R}^n

T can be $[0,\infty)$ or [a,b] or non-negative integers or subsets of $\mathcal{R}^n, n \ge 1$ Now, if we fix $t \in T$, then we have a random variable

 $\omega \to X_t(\omega); \omega \in \Omega$

If we fix $\omega \in \Omega$, we have the path of X_t :

$$t \to X_t(\omega); t \in T$$

Finite-dimensional distributions

A finite dimensional distributions of the process $\{X_t\}_{t\in T}$ are the measures $\mu_{t_1,t_2,..,t_k}$ defined on \mathcal{R}^{nk} , k = 1, 2, ... by

$$\mu_{t_1,t_2,\ldots,t_k}(F_1\times F_2\times\cdots\times F_k)=P[X_{t_1}\in F_1,\ldots,X_{t_k}\in F_k]; \ t_i\in T$$

 $\{F_j\}_{j=1}^k$ are Borel sets in \mathcal{R}^n

Finite-dimensional distributions

A finite dimensional distributions of the process $\{X_t\}_{t\in T}$ are the measures $\mu_{t_1,t_2,..,t_k}$ defined on \mathcal{R}^{nk} , k = 1, 2, ... by

$$\mu_{t_1,t_2,\ldots,t_k}(F_1\times F_2\times\cdots\times F_k)=P[X_{t_1}\in F_1,\ldots,X_{t_k}\in F_k]; \ t_i\in T$$

 $\{F_j\}_{j=1}^k$ are Borel sets in \mathcal{R}^n

Question: Given a family { $\nu_{t_1,t_2,..,t_k}$; $k \in \mathcal{N}_+, t_i \in T$ } of probability measures on \mathcal{R}^{nk} , can we construct a stochastic process $Y = \{Y_t\}_{t \in T}$ having $\nu_{t_1,t_2,..,t_k}$ as its FDD?

Finite-dimensional distributions

A finite dimensional distributions of the process $\{X_t\}_{t\in T}$ are the measures $\mu_{t_1,t_2,..,t_k}$ defined on \mathcal{R}^{nk} , k = 1, 2, ... by

$$\mu_{t_1,t_2,\ldots,t_k}(F_1\times F_2\times\cdots\times F_k)=P[X_{t_1}\in F_1,\ldots,X_{t_k}\in F_k]; \ t_i\in T$$

 $\{F_j\}_{j=1}^k$ are Borel sets in \mathcal{R}^n

Question: Given a family { $\nu_{t_1,t_2,..,t_k}$; $k \in \mathcal{N}_+, t_i \in T$ } of probability measures on \mathcal{R}^{nk} , can we construct a stochastic process $Y = \{Y_t\}_{t \in T}$ having $\nu_{t_1,t_2,..,t_k}$ as its FDD? **Answer**: Kolmogorov Existence Theorem

Kolmogorov Existence/Extension Theorem

Theorem

For all $t_1, t_2, ..., t_k \in T, k \in \mathcal{N}_+$, let $\nu_{t_1, t_2, ..., t_k}$ be the probability measures on \mathcal{R}^{nk} s.t.

$$\nu_{t_1,..,t_k}(F_1\times\cdots\times F_k)=\nu_{t_{\sigma(1)},..,t_{\sigma(k)}}(F_{\sigma(1)}\times\cdots\times F_{\sigma(k)})$$

for all permutations σ on $\{1,2,...,k\}$ and

$$\nu_{t_1,..,t_k}(F_1 \times \cdots \times F_k) = \nu_{t_1,..,t_k,...,t_{k+m}}(F_{\sigma(1)} \times \cdots \times F_{\sigma(k)} \times \mathcal{R}^n, ..., \times \mathcal{R}^n)$$

for all $m \in \mathcal{N}_+$. Then there exists a probability space (Ω, \mathcal{F}, P) and a stochastic process $\{X_t\}_{t \in \mathcal{T}}$ on $\Omega, X_t : \Omega \to \mathcal{R}^n$, s.t.

$$\nu_{t_1,\ldots,t_k}(F_1\times\cdots\times F_k)=P[X_{t_1}\in F_1,\ldots,X_{t_k}\in F_k],\forall t_i\in T,k\in\mathcal{N}_+$$

for all Borel sets F_i

Example: Brownian Motion

Brownian Motion: Stochastic process $B_t(\omega)$, interpreted as the position at time t of the pollen grain ω Now to construct such process, we need to construct a family of appropriate probability measures $\{\nu_{t_1,t_2,...,t_k}\}$ according to Kolomogorov's way. Fix $x \in \mathcal{R}^n$ and define

$$p(t, x, y) = (2\pi t)^{-n/2} \exp(-\frac{(x-y)^2}{2t})$$
 for $y \in \mathcal{R}^n, t > 0$

Now if, $0 \le t_1 \le t_2 \cdots \le t_k$ define a measure ν_{t_1,t_2,\dots,t_k} on \mathcal{R}^{nk} by $\int_{F_1 \times \dots \times F_k} p(t_1, x, x_1) p(t_2 - t_1, x_1, x_2) \dots p(t_k - t_{k-1}, x_{k-1}, x_k) dx_1 \dots dx_k$

Now, it is possible to generate a permutation σ such that $0 \leq \sigma(t_1) \leq \sigma(t_2) \cdots \leq \sigma(t_k)$, therefore, satisfies the first condition automatically. Now, consider the notation $dy = dy_1 \dots dy_k$ for Lebesgue measure and $\int_{\mathcal{R}^n} p(t, x, y) = 1 \forall t \geq 0 \implies$ second condition is also satisfied page.

Observations from Brownian motion example

- The Brownian motion thus defined is not unique.
- Paths may not be continuous (esp. if the Borel sets are intervals) which should be.

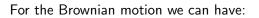
The second observation motivates us to identify $\omega \in \Omega$ with a continuous function from $[0,\infty)$ to \mathcal{R}^n . The continuity of path is assured by **Kolmogorov Continuity Theorem**

Theorem

Suppose that the process $X = \{X_t\}_{t \ge 0}$ satisfies the following condition: $\forall T > 0 \exists (\alpha, \beta, D) > 0$ s.t

$$E[|X_t - X_s|^{lpha}] \leq D|t - s|^{1+eta}; \hspace{0.1in} 0 \leq s,t \leq T$$

Then there exists a continuous version of X



$$E[|B_t - B_s|^4] \le n(n+2)|t-s|^2$$

Therefore, $\alpha = 4, D = n(n+2), \beta = 1$ and we have a continuous version.

References

- http://www.kolmogorov.com/Kolmogorov.html An excellent website maintained by the students of Kolmogorov
- Øksendal, Bernt. Stochastic differential equations. Springer Berlin Heidelberg, 2003. – Most of the materials are based on this book!
- Lamperti, John W. Probability: A survey of the mathematical theory. Vol. 770. John Wiley & Sons, 2011.
- Kolmogorov, Andrey Nikolaevich. "Foundations of the Theory of Probability." (1950).
- Billingsley, Patrick. Probability and measure. John Wiley & Sons, 2008 Contains the proof of existence theorem
- Klebaner, Fima C. Introduction to stochastic calculus with applications. Vol. 57. London: Imperial College Press, 2005. – Nice book to start with Stochastic Process!

April 25, 1903 - October 20, 1987

16/16

http://www.kolmogorov.com/Kolmogorov.html

