

# Identifying large bipartite subgraphs of a graph: combinatorial versus spectral approaches

#### Debdas Paul

Institute for Systems Theory and Automatic Control University of Stuttgart, Germany

Collaborator: Prof. Dragan Stevanović

Affiliation: University of Niš, PMF, Serbia and University of Primorska, UP IAM,

Slovenia

WGSCO-2018, Aveiro, Portugal, January 27-29

Bipartite graphs have important applications in various fields of science and technology.

#### **Examples**

- Decode code words received from the channel (Factor graphs and Tanner graphs)
- Petri nets (Directed bipartite graphs)
- Movies preferences: How much someone would enjoy a movie based on their preferences.
- ...

In fact it has been shown that all complex networks can be viewed as bipartite structures sharing some important statistics..

-Guillaume, J. L., & Latapy, M. (2004), Info. proc. lett., 90(5)

## Reprinted from ISRAEL JOURNAL OF MATHEMATICS Volume 3, Number 2, June 1965

#### ON SOME EXTREMAL PROBLEMS IN GRAPH THEORY

BY P. ERDÖS

#### ABSTRACT

The author proves that if C is a sufficiently large constant then every graph of n vertices and  $(Cn^{3/2})$  edges contains a hexagon  $X_1, X_2, X_3, X_4, X_5, X_6$  and a seventh vertex Y joined to  $X_1, X_3$  and  $X_5$ . The problem is left open whether our graph contains the edges of a cube, (i.e. an eight vertex Z joined to  $X_2, X_4$  and  $X_6$ ).

#### Lemma

Every G(n; m) has an even subgraph having at least m/2 edges.

## Reprinted from ISRAEL JOURNAL OF MATHEMATICS Volume 3, Number 2, June 1965

#### ON SOME EXTREMAL PROBLEMS IN GRAPH THEORY

BY P. ERDÖS

#### ABSTRACT

The author proves that if C is a sufficiently large constant then every graph of n vertices and  $(Cn^{3/2})$  edges contains a hexagon  $X_1, X_2, X_3, X_4, X_5, X_6$  and a seventh vertex Y joined to  $X_1, X_3$  and  $X_5$ . The problem is left open whether our graph contains the edges of a cube, (i.e. an eight vertex Z joined to  $X_2, X_4$  and  $X_6$ ).

#### Lemma

Every G(n; m) has an even subgraph having at least m/2 edges.



For a simple, connected graph G(V, E) having a degree matrix D, the three characteristic matrices indicate bipartivity in the following way:

- Adjacency matrix (A)
  - *G* is bipartite  $\Longrightarrow \lambda_{\min}^A = -\lambda_{\max}^A$
  - G is non-bipartite, then  $\lambda_{\min}^A$  is nearer to 0
- Normalized Laplacian matrix  $(\mathcal{NL} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}}, L = D A)$ 
  - *G* is bipartite  $\iff \lambda_{\max}^{\mathcal{NL}} = 2$
- Signless Laplacian matrix (Q = D + A)
  - G is bipartite  $\iff \lambda_{\min}^Q = 0$

Other measure:

$$\beta(G) = \frac{\text{\#even closed walks}}{\text{Total} \# \text{closed walks}} = \frac{\sum_{i=1}^{N} \cosh(\lambda_i)}{\sum_{i=1}^{N} \exp(\lambda_i)}, \lambda_i \in \lambda_i$$

-Estrada, E., & Rodríguez-Velázquez, J. A. (2005). Phys. Rev. F 72(4)



For a simple, connected graph G(V, E) having a degree matrix D, the three characteristic matrices indicate bipartivity in the following way:

- Adjacency matrix (A)
  - G is bipartite  $\implies \lambda_{\min}^A = -\lambda_{\max}^A$
  - G is non-bipartite, then  $\lambda_{\min}^A$  is nearer to 0
- Normalized Laplacian matrix  $(\mathcal{NL} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}}, L = D A)$ 
  - G is bipartite  $\iff \lambda_{\max}^{\mathcal{NL}} = 2$
- Signless Laplacian matrix (Q = D + A)
  - G is bipartite  $\iff \lambda_{\min}^Q = 0$

Other measure:

$$\beta(G) = \frac{\text{\#even closed walks}}{\text{Total \# closed walks}} = \frac{\sum_{i=1}^{N} \cosh(\lambda_i)}{\sum_{i=1}^{N} \exp(\lambda_i)}, \lambda_i \in \lambda_i$$

-Estrada, E., & Rodríguez-Velázquez, J. A. (2005). Phys. Rev. F. 72(4)



For a simple, connected graph G(V, E) having a degree matrix D, the three characteristic matrices indicate bipartivity in the following way:

- Adjacency matrix (A)
  - G is bipartite  $\implies \lambda_{\min}^A = -\lambda_{\max}^A$
  - G is non-bipartite, then  $\lambda_{\min}^A$  is nearer to 0
- Normalized Laplacian matrix  $(\mathcal{NL} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}}, L = D A)$ 
  - *G* is bipartite  $\iff \lambda_{\max}^{\mathcal{NL}} = 2$
- Signless Laplacian matrix (Q = D + A)
  - G is bipartite  $\iff \lambda_{\min}^Q = 0$

Other measure:

$$\beta(G) = \frac{\text{\#even closed walks}}{\text{Total} \# \text{closed walks}} = \frac{\sum_{i=1}^{N} \cosh(\lambda_i)}{\sum_{i=1}^{N} \exp(\lambda_i)}, \lambda_i \in \lambda_i$$

-Estrada, E., & Rodríguez-Velázquez, J. A. (2005), Phys. Rev. E. **72**(4



For a simple, connected graph G(V, E) having a degree matrix D, the three characteristic matrices indicate bipartivity in the following way:

- Adjacency matrix (A)
  - G is bipartite  $\implies \lambda_{\min}^A = -\lambda_{\max}^A$
  - G is non-bipartite, then  $\lambda_{\min}^A$  is nearer to 0
- Normalized Laplacian matrix  $(\mathcal{NL} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}}, L = D A)$ 
  - *G* is bipartite  $\iff \lambda_{\max}^{\mathcal{NL}} = 2$
- Signless Laplacian matrix (Q = D + A)
  - *G* is bipartite  $\iff \lambda_{\min}^{Q} = 0$

Other measure:

$$\beta(G) = \frac{\text{\#even closed walks}}{\text{Total \# closed walks}} = \frac{\sum_{i=1}^{N} \cosh(\lambda_i)}{\sum_{i=1}^{N} \exp(\lambda_i)}, \lambda_i \in \lambda_i$$

-Estrada, E., & Rodríguez-Velázquez, J. A. (2005), Phys. Rev. E, 72(4



For a simple, connected graph G(V, E) having a degree matrix D, the three characteristic matrices indicate bipartivity in the following way:

- Adjacency matrix (A)
  - G is bipartite  $\implies \lambda_{\min}^A = -\lambda_{\max}^A$
  - G is non-bipartite, then  $\lambda_{\min}^A$  is nearer to 0
- Normalized Laplacian matrix  $(\mathcal{NL} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}}, L = D A)$ 
  - *G* is bipartite  $\iff \lambda_{\max}^{\mathcal{NL}} = 2$
- Signless Laplacian matrix (Q = D + A)
  - *G* is bipartite  $\iff \lambda_{\min}^{Q} = 0$

Other measure:

$$\beta(G) = \frac{\# \text{even closed walks}}{\mathsf{Total} \, \# \, \mathsf{closed walks}} = \frac{\sum_{i=1}^{N} cosh(\lambda_i)}{\sum_{i=1}^{N} \exp(\lambda_i)}, \lambda_i \in \lambda_{\mathcal{A}}$$

-Estrada, E., & Rodríguez-Velázquez, J. A. (2005), Phys. Rev. E, 72(4)

### Strengths and weaknesses



| Matrix               | Bipartite | # Components | # Bipartite Components | # Edges |
|----------------------|-----------|--------------|------------------------|---------|
| Adjacency            | Yes       | No           | No                     | Yes     |
| Laplacian            | No        | Yes          | No                     | Yes     |
| Signless Laplacian   | No        | No           | Yes                    | Yes     |
| Normalized Laplacian | Yes       | Yes          | Yes                    | No      |

- Butler. S and Chung. F., Handbook of Linear Algebra, 2nd Eds. 2013

A **No** indicates the existence of two non-isomorphic graphs which have the same spectrum but differ in the indicated structure

#### **Examples**

- Multiplicity of  $\lambda Q = 0$  indicates the # of bipartite components
- # of bipartite components is  $\alpha + n \sum_{i=1} \lambda_i^{\mathcal{NL}}$ ,  $\alpha$  is the multiplicity of 2

- How can we find large bipartite subgraphs in G using the argument by Erdös and the spectrum of A, L,  $\mathcal{NL}$ , and Q?
- How efficient (in terms of size) are those methods in finding large subgraphs?

- How can we find large bipartite subgraphs in G using the argument by Erdös and the spectrum of A, L,  $\mathcal{NL}$ , and Q?
- How efficient (in terms of size) are those methods in finding large subgraphs?

- **1** Finding the largest bipartition in G(V, E)
  - Combinatorial approach
  - Spectral approaches
  - Initial results
- 2 New measures
  - · Results with new measures
- 3 Summary and outlook

- **1** Finding the largest bipartition in G(V, E)
  - Combinatorial approach
  - Spectral approaches
  - Initial results
- New measures
- Summary and outlook

### Combinatorial approach

9

- **1** partition V into two disjoint sets  $(V_1 \cup V_2)$
- 2 transfer a vertex  $v_i \in V_j$  to  $V_{k \neq j}, j, k = \{1, 2\}$  if  $\frac{2 * \deg(v_i) \text{in } V_j}{\deg(v_i)} > 1$
- **3** terminate if there is no more new movement.

```
Result: \frac{|F_{bipar}(G)|}{|F(G)|}
Initialize: V_{final} = \Phi; X \subset V \text{ and } Y = V \setminus \{X\}
I repeat
S_{start} = X(or Y) \text{ then } S_{start} = X(or Y) \text{ then } S_{tart} = X(or Y) \text{ then
```

Note: To minimize the effect of random partitioning, we consider the average of 10 different partitions.

### Combinatorial approach

9

- **1** partition V into two disjoint sets  $(V_1 \cup V_2)$
- 2 transfer a vertex  $v_i \in V_j$  to  $V_{k \neq j}, j, k = \{1, 2\}$  if  $\frac{2 * \deg(v_i) \text{in } V_j}{\deg(v_i)} > 1$
- 3 terminate if there is no more new movement.

$$\label{eq:connected graph} \begin{split} & \textbf{Input: A simple, connected graph} \\ & \textbf{$G = (E,V)$} \\ & \textbf{Result: } \frac{|E_{bipart}(G)|}{|E(G)|} \\ & \textbf{Initialize: } V_{final} = \Phi; \ X \subset V \ \text{and} \\ & Y = V \backslash \{X\} \end{split}$$

$$\begin{array}{c|cccc} \textbf{1} & \textbf{repeat} \\ \textbf{2} & \textbf{if} & S_{start} = X(or\ Y)\ \textbf{then} \\ \textbf{3} & \textbf{if} & 2E_u^X > E_u^V \land u \notin V_{final} \\ & (2E_v^Y > E_v^V \land v \notin V_{final})\ \textbf{then} \\ \textbf{4} & & Y \leftarrow u\ (X \leftarrow v); \\ \textbf{5} & & V_{final} \leftarrow u\ (V_{final} \leftarrow v) \\ \textbf{6} & & S_{start} \leftarrow Y\ (X) \\ \end{array}$$

7 **until** There is no movement of vertices;  $E_i^H := \{ |E| | i \in H \land (\forall i \in H, (i, i) \in E) \}$ 

Note: To minimize the effect of random partitioning, we consider the average of 10 different partitions.

### Combinatorial approach

9

- $oldsymbol{1}$  partition V into two disjoint sets  $(V_1 \cup V_2)$
- 2 transfer a vertex  $v_i \in V_j$  to  $V_{k \neq j}, j, k = \{1, 2\}$  if  $\frac{2 * \deg(v_i) \text{in } V_j}{\deg(v_i)} > 1$
- 3 terminate if there is no more new movement.

$$\label{eq:connected graph} \begin{split} & \textbf{Input: A simple, connected graph} \\ & \textbf{$G = (E,V)$} \\ & \textbf{Result: } \frac{|E_{bipart}(G)|}{|E(G)|} \\ & \textbf{Initialize: } V_{final} = \Phi; \ X \subset V \ \text{and} \\ & Y = V \backslash \{X\} \end{split}$$

$$\begin{array}{c|cccc} \textbf{1} & \textbf{repeat} \\ \textbf{2} & \textbf{if} & S_{start} = X(or\ Y)\ \textbf{then} \\ \textbf{3} & \textbf{if} & 2E_u^X > E_u^V \land u \notin V_{final} \\ & (2E_v^Y > E_v^V \land v \notin V_{final})\ \textbf{then} \\ \textbf{4} & & Y \leftarrow u\ (X \leftarrow v); \\ \textbf{5} & & V_{final} \leftarrow u\ (V_{final} \leftarrow v) \\ \textbf{6} & & S_{start} \leftarrow Y\ (X) \\ \end{array}$$

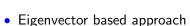
7 **until** There is no movement of vertices;  $E_i^H := \{|E| \mid i \in H \land (\forall i \in H, (i, i) \in E)\}$ 

Note: To minimize the effect of random partitioning, we consider the average of 10 different partitions.



- Eigenvector based approach
  - 1 extract the non-zero entries of the eigenvectors corresponding to
    - $\lambda_{\min}^A$  and  $\lambda_{\min}^Q$
    - $\lambda_{\max}^{\mathcal{NL}}$  and  $\lambda_{\max}^{\mathcal{L}}$
  - 2 make the bipartition based on the signs of the non-zero entries.
- Approach based on Estrada and Rodríguez-Velázquez's  $\beta(G)$ 

  - $\bigcirc$   $G \leftarrow G \epsilon$
  - 3 Repeat steps 1 and 2 until G becomes bipartite



- 1 extract the non-zero entries of the eigenvectors corresponding to
  - $\lambda_{\min}^{A}$  and  $\lambda_{\min}^{Q}$
  - $\lambda_{\max}^{\mathcal{NL}}$  and  $\lambda_{\max}^{L}$
- 2 make the bipartition based on the signs of the non-zero entries.
- Approach based on Estrada and Rodríguez-Velázquez's  $\beta(G)$

1 
$$e \leftarrow \underset{e \in E}{\operatorname{arg \, min}} \ 1 - [\beta(G - e) - \beta(G)]$$

- $\mathbf{2} \ G \leftarrow G e$
- **3** Repeat steps 1 and 2 until *G* becomes bipartite.

### Choice of graph models

| • |  |
|---|--|

| Graph Models          | Parameter(s) | initial value : step size :final value |
|-----------------------|--------------|----------------------------------------|
| Erdös-Rényi (E-R)     | р            | 0.1 : 0.1 : 1                          |
|                       |              |                                        |
| Watts-Strogatz (W-S)  | $(\beta, k)$ | (0.3, 1:1:9)                           |
|                       |              |                                        |
| Barabási-Albert (B-A) | n            | 1:1:10                                 |

- p: Probabilty of attachment
- $(\beta, k)$ : probability of rewiring and the mean degree
- n: number of edges to attach in every step

We generate 1000 different graphs with 20 vertices corresponding to each values in the respective model parameters.

### Choice of graph models

| lS |  |  |  |
|----|--|--|--|

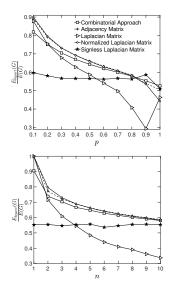
| Graph Models          | Parameter(s) | initial value : step size :final value |
|-----------------------|--------------|----------------------------------------|
| Erdös-Rényi (E-R)     | р            | 0.1 : 0.1 : 1                          |
|                       |              |                                        |
| Watts-Strogatz (W-S)  | (β, k)       | (0.3, 1:1:9)                           |
| - , ,                 |              | ,                                      |
| Barabási-Albert (B-A) | n            | 1:1:10                                 |

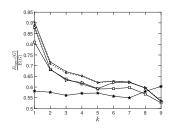
- p: Probabilty of attachment
- $(\beta, k)$ : probability of rewiring and the mean degree
- n: number of edges to attach in every step

We generate 1000 different graphs with 20 vertices corresponding to each values in the respective model parameters.

## Eigenvector vs. combinatorial approach



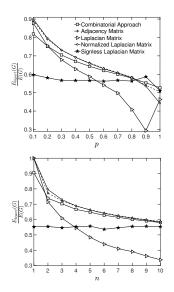


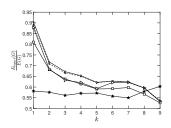


• Performances of NL

#### Eigenvector vs. combinatorial approach







#### Remark:

 Performances of NL and A matrices are comparable even slightly better than that of the combinatorial approach.

- **1** Finding the largest bipartition in G(V, E)
- 2 New measures
  - Results with new measures
- 3 Summary and outlook

### New measures of edge bipartivity



Let, Spectrum of 
$$A(G) = (\nu, \lambda)$$

 $u := \mathsf{set} \ \mathsf{of} \ \mathsf{eigenvectors}$ 

 $\lambda := \text{set of eigenvalues} = \{\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{|V(G)|}\}$ 

• A matrix based approach

$$\mathbf{1} \ \ e \leftarrow \operatorname*{arg\,max}_{e \in E(G)} \frac{\nu_{\lambda_{|V(G)|}}^{i} \times \nu_{\lambda_{|V(G)|}}^{j}}{\nu_{\lambda_{1}}^{i} \times \nu_{\lambda_{1}}^{j}}$$

$$\mathbf{2} \ G \leftarrow (G - e)$$

 $\bullet$   $\mathcal{NL}$  matrix based approach

$$1 e \leftarrow \arg\max_{e \in E(G)} \frac{\nu_{\gamma_1}^i \times \nu_{\gamma_1}^j}{\nu_{\gamma_|V(G)|}^i \times \nu_{\gamma|V(G)|}^i}$$

$$\bigcirc$$
  $G \leftarrow (G - e)$ 

### New measures of edge bipartivity



Let, Spectrum of 
$$A(G) = (\nu, \lambda)$$

 $u := \mathsf{set} \ \mathsf{of} \ \mathsf{eigenvectors}$ 

$$\lambda := \text{set of eigenvalues} = \{\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{|V(G)|}\}$$

• A matrix based approach

$$2 G \leftarrow (G - e)$$

NL matrix based approach

$$\textbf{1} \ \ e \leftarrow \underset{e \in E(G)}{\arg\max} \, \frac{\nu_{\gamma_1}^i \times \nu_{\gamma_1}^j}{\nu_{\gamma|V(G)|}^i \times \nu_{\gamma|V(G)|}^j}$$

$$\bigcirc$$
  $G \leftarrow (G - e)$ 

### New measures of edge bipartivity



Let, Spectrum of 
$$A(G) = (\nu, \lambda)$$

 $u := \mathsf{set} \ \mathsf{of} \ \mathsf{eigenvectors}$ 

$$\lambda := \text{set of eigenvalues} = \{\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_{|V(G)|}\}$$

• A matrix based approach

$$\textbf{1} \ \ e \leftarrow \mathop{\arg\max}_{\mathbf{e} \in E(G)} \frac{\nu_{\lambda_{|V(G)|}}^i \times \nu_{\lambda_{|V(G)|}}^j}{\nu_{\lambda_1}^i \times \nu_{\lambda_1}^i}$$

$$G \leftarrow (G - e)$$

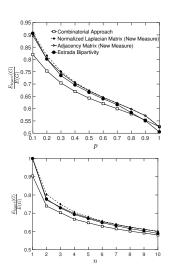
•  $\mathcal{NL}$  matrix based approach

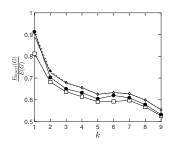
$$\begin{array}{l} \textbf{1} \ \ e \leftarrow \underset{e \in E(G)}{\arg\max} \, \frac{\nu_{\gamma_1}^i \times \nu_{\gamma_1}^i}{\nu_{\gamma_|V(G)|}^i \times \nu_{\gamma_|V(G)|}^i} \end{array}$$

$$\bigcirc$$
  $G \leftarrow (G - e)$ 

#### Performances of the new measures





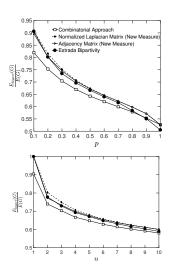


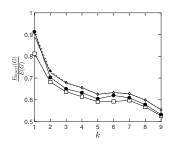
#### Remark

 Performances of the new measures are slightly better than that of the Estrada and Rodríguez-Velázquez.

#### Performances of the new measures







#### Remark:

 Performances of the new measures are slightly better than that of the Estrada and Rodríguez-Velázquez.

- **1** Finding the largest bipartition in G(V, E)
- New measures
- 3 Summary and outlook

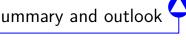
- Summary
  - 1 Aim: Identification of large bipartite subgraphs of a graph
  - 2 Approaches:
    - Combinatorial approach due to Erdös
    - Spectral approaches involving A, L,  $\mathcal{NL}$  and Q matrices
    - Bipartivity  $\beta(G)$  proposed by Estrada and Rodríguez-Velázquez in 2005
    - New measure of edge bipartivity using A,  $\mathcal{NL}$
  - **3 Graph models**: E-R, W-S, and B-A
  - **4 Preliminary observation**: A,  $\mathcal{NL}$  based approaches performs better than combinatorial approach and the approach based on  $\beta(G)$  by Estrada and Rodríguez-Velázquez.
- Outlook
  - Mathematical proofs to justify numerical observations.
  - 2 Consider other classes of graphs, e.g.- 3-connected cubic planar triangle-free graphs for which the lower bound is
    39n/22 9/12 Cui. Q, Wang. J, (2009), Discr. Math. 309 (5)

- Summary
  - **1** Aim: Identification of large bipartite subgraphs of a graph
  - 2 Approaches:
    - Combinatorial approach due to Erdös
    - Spectral approaches involving A, L,  $\mathcal{NL}$  and Q matrices
    - Bipartivity  $\beta(G)$  proposed by Estrada and Rodríguez-Velázquez in 2005
    - New measure of edge bipartivity using A,  $\mathcal{NL}$
  - **3 Graph models**: E-R, W-S, and B-A
  - **4 Preliminary observation**: A,  $\mathcal{NL}$  based approaches performs better than combinatorial approach and the approach based or  $\beta(G)$  by Estrada and Rodríguez-Velázquez.
- Outlook
  - Mathematical proofs to justify numerical observations.
  - 2 Consider other classes of graphs, e.g.- 3-connected cubic planar triangle-free graphs for which the lower bound is  $\frac{39n}{32} \frac{9}{12}$  Cui. Q, Wang. J, (2009), Discr. Math. 309 (5)

- Summary
  - **1** Aim: Identification of large bipartite subgraphs of a graph
  - 2 Approaches:
    - Combinatorial approach due to Erdös
    - Spectral approaches involving A, L,  $\mathcal{NL}$  and Q matrices
    - Bipartivity  $\beta(G)$  proposed by Estrada and Rodríguez-Velázquez in 2005
    - New measure of edge bipartivity using A,  $\mathcal{NL}$
  - **3 Graph models**: E-R, W-S, and B-A
  - **4 Preliminary observation**: A,  $\mathcal{NL}$  based approaches performs better than combinatorial approach and the approach based on  $\beta(G)$  by Estrada and Rodríguez-Velázquez.
- Outlook
  - Mathematical proofs to justify numerical observations.
  - 2 Consider other classes of graphs, e.g.- 3-connected cubic planar triangle-free graphs for which the lower bound is  $\frac{39n}{32} \frac{9}{12}$  Cui. Q, Wang. J, (2009), Discr. Math. 309 (5)

ook 👇

- Summary
  - **1 Aim**: Identification of large bipartite subgraphs of a graph
  - 2 Approaches:
    - Combinatorial approach due to Erdös
    - Spectral approaches involving A, L,  $\mathcal{NL}$  and Q matrices
    - Bipartivity  $\beta(G)$  proposed by Estrada and Rodríguez-Velázquez in 2005
    - New measure of edge bipartivity using A,  $\mathcal{NL}$
  - 3 Graph models: E-R, W-S, and B-A
  - **4 Preliminary observation**: A,  $\mathcal{NL}$  based approaches performs better than combinatorial approach and the approach based on  $\beta(G)$  by Estrada and Rodríguez-Velázquez.
- Outlook
  - Mathematical proofs to justify numerical observations.
  - 2 Consider other classes of graphs, e.g.- 3-connected cubic planar triangle-free graphs for which the lower bound is  $\frac{39n}{32} \frac{9}{12}$  Cui. Q, Wang. J, (2009), Discr. Math. 309 (5)



- Summary
  - **1 Aim**: Identification of large bipartite subgraphs of a graph
  - 2 Approaches:
    - Combinatorial approach due to Erdös
    - Spectral approaches involving A, L,  $\mathcal{NL}$  and Q matrices
    - Bipartivity  $\beta(G)$  proposed by Estrada and Rodríguez-Velázquez in 2005
    - New measure of edge bipartivity using A,  $\mathcal{NL}$
  - **3** Graph models: E-R, W-S, and B-A
  - **4** Preliminary observation: A,  $\mathcal{NL}$  based approaches performs better than combinatorial approach and the approach based on  $\beta(G)$  by Estrada and Rodríguez-Velázquez.
- Outlook
  - 1 Mathematical proofs to justify numerical observations.
  - 2 Consider other classes of graphs, e.g.- 3-connected cubic planar triangle-free graphs for which the lower bound is  $\frac{39n}{22} - \frac{9}{12}$  - Cui. Q, Wang. J, (2009), Discr. Math. 309 (5)

The Ministry of Education, Science, Culture and Sport of the Republic of Slovenia

Thank you for your kind attention!