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Abstract

The purpose of this informal report is to explain Ollivier-Ricci curvature
for graphs with examples.

1 Ollivier-Ricci curvature for graphs

The concept of Ollivier-Ricci curvature [7] (a coarse version of usual Ricci
curvature on manifolds) for graphs can be described in terms of Optimal
Transportation problem due to Monge and Kantorovich (Monge-Kantorovich
transportation problem) [9]. Before going into the details of transportation
problem and subsequent derivation of Ollivier-Ricci curvature from it, we
should revise some basic mathematical concepts/terminologies which will be
used frequently in this report.

1.1 Algebra, measure, probability measure, met-
ric and graphs

First, we begin with algebra of sets.

Definition 1. (Algebra) Let Ω denotes a universal set. A collection A of
subsets of Ω is called an algebra or field if:

1. Ω ∈ A
2. if A ∈ A then complement of A or Ac is also ∈ A
3. if A ∈ A and if B ∈ A, then A ∪B ∈ A

Example 1. 1. A = {φ,Ω} is an algebra

2. If Ω is a finite set, the the power set of Ω is an algebra
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Definition 2 (σ-algebra). A collection A of subsets of Ω is called a σ-algebra
if :

1. Ω ∈ A
2. if A ∈ A then complement of A or Ac is also ∈ A
3. if An ∈ A for each n in a countable collection (An)∞n=1then∪∞n=1An ∈ A

Example 2. 1. Let Ω = {T,H} in a coin-tossing.Then

F = {{H}, {T}, {H,T}, φ}

is a σ − algebra and contains also all possible subsets of Ω

2. Let Ω = {1, 2, 3}.Then

F = {{1}, {2, 3}, {1, 2, 3}, φ}

is a σ − algebra.

3. Let Ω = {1, 2, 3}.Then

F = {{1}, {2}, {3}, {1, 2, 3}, φ}

is NOT a σ − algebra.

Now,we are going to define general notion of measure. Intuitively one
can think of measures are the length on the real line, area in two dimension,
volume in three dimensions, when properly defined.

Definition 3. (Measure) Let Ω be a set. A measure (mainly positive mea-
sure) over a σ-algebra (F defined over Ω)is a function µ : F → R+ satisfying

1. µ(A) ≥ 0 for all A ∈ F
2. µ(φ) = 0

3. if Ai ∈ F for all Ai in the collection (Ai)
∞
i=1 of pairwise disjoint sets,

then

µ(∪∞i=1Ai) =
∞∑
i=1

µ(Ai)

The pair (Ω,F) is called a measurable space. Now if µ(Ω) = 1 then
µ is called a probability measure and denoted by P . The triplet (Ω,F , P ) is
called a probability space, where Ω is a set of outcomes, F is a set of events,
and P : F → [0, 1] is a function assigning probabilities to events. F is taken
to be a σ− algebra .

Definition 4. (Metric space) A metric space is a non-empty set X together
with a function d (called a metric or ”distance function”) which assigns a
real number d(x, y) to every pair x, y belongs X satisfying the properties (or
axioms):
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1. d(x, y) ≥ 0 and d(x, y) = 0 iff x = y,

2. d(x, y) = d(y, x)

3. d(x, y) + d(y, z) ≥ d(x, y), for any z ∈ X.

Now let us consider a simple (without self-loops) undirected weighted
finite graph g over a set of vertices X, then we can think of g as a function
g : X × X → [0,∞), i.e, g takes two vertices and maps to a non-negative
real number such that:

1. g(x, x) = 0 (As the graph is simple)

2. g(x, y) = g(y, x) (As the graph is undirected)

3. the set {y ∈ X|g(x, y) > 0} is finite for every x ∈ X (local finiteness)

Now, two vertices x, y ∈ X are connected by an edge of weight g(x, y)
whenever g(x, y) > 0. In this case, we can write x ∼ y and say x is adjacent
to y or x and y are neighbors.

Example 3. Let us consider the following graph (Disconnected): The set

1

2

3

4

of vertices is X = 1, 2, 3, 4 and

g(1, 2) = g(2, 1) = g(1, 3) = g(3, 1) = g(2, 3) = g(3, 2) = 1

and g(i, 4) = g(4, i) = 0 for i = 1, 2, 3 Now the degree of a vertex a ∈ X is
defined as

wa =
∑
x∈X

g(x, a)

In case g(x, y) takes 0 or 1 for x, y ∈ X, the degree wa is the number of
neighbors a. In the above graph w1 = w2 = w3 = 2, w4 = 0.

Now, for a connected graph (simple and undirected and finite) g, if d(x, y)
is the minimal n such that vertices x, y ∈ X can be connected by a path
length of n then d is a metric i.e, it satisfies all three properties of a metric
described above. Below is the proof.
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proof 1. Since g is connected the is a path connecting every two vertices
of the graph. This d(x, y) < ∞ for all x, y ∈ X. Now, the path from x to
x has length 0, therefore d(x, x) = 0. Clearly, if x 6= y, the d(x, y) > 0 and
thus d(x, y) 6= 0.
Let (x0, . . . , xn) be the shortest path from x := x0 to y := y0 by remembering
i 7→ n − i, i = 0, . . . , n, we get (xn, . . . , x0) from ytox. Since the length of
the path did not change we have d(x, y) = d(y, x).
Now, for the last axiom, let us consider another vertex z which not in the
minimal path from x to y, then definitely the path becomes longer. Hence
d(x, y) ≤ d(x, z) + d(z, y)

Now, we are ready to proceed towards defining the Kantorovich formal-
ism of Monge’s transportation problem (Monge-Kantorovich transportation
problem).

1.2 The Monge-Kantorovich transportation prob-
lem

In simple words, the problem is to transport a pile of sand into a hole.
Obviously, the pile and hole must have the same volume (or measures!).
Now consider the following notations:

1. measure µsand := amount of sand defined on measurable space (Ωsand,Fsand)
2. measure µhole := size of hole defined on measurable space (Ωhole,Fhole)
3. Let Asand and Ahole are measurable subsets of Ωsand and Ωhole respec-

tively, then we can interpret the following:

• µsand(Asand) gives a measure how much sand is located inside
Asand

• µhole(Ahole) gives a measure how much sand can be piled in
Ahole

Now, if we normalize the measure (for both the amount of sand and volume
of hole) to 1, i.e, µsand(Ωsand) and µhole(Ωhole) to 1, then µsand and µhole are
probability measures!. The sand moving from a position Asand ⊆ Ωsand to
a position Ahole ⊆ Ωhole has to be transported over a distance d. So, now
we need a Transference plan (T ) which indicates how the transport
of the mass is managed (amount – measure!). Therefore formally
we can think of a measure T (Asand × Ahole) which tells us how much
sand of position Asand is filled in at position Ahole. Moreover as
we normalized the amount of sand and the volume of the hole to 1, the
transference plan is nothing but a probability measure!. Now, there might
be several transference plans but we need the optimal one which minimize
the cost of transporting a unit mass from a position in the pile to a position
in the hole. Let us formally define a transference plan.
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Definition 5. (Transference plan) The measure T ∈ P (Ωsand×Ωhole) (as
it is a probability measure) is a transference plan if it satisfies for Asand ∈
Ωsand

T (Asand × Ωhole) =

∫
Asand×Ωhole

dT (x, y) = µsand(Asand)

and for Ahole ∈ Ωhole

T (Ωsand ×Ahole) =

∫
Ωsand×Ahole

dT (x, y) = µhole(Ahole)

Now, we can denote the set of all transference plans in the following way:

Tall(µsand, µhole) ={T ∈ P (Ωsand × Ωhole)|T (Asand × Ωhole) = µsand(Asand),

T (Ωsand ×Ahole) = µhole(Ahole), Asand ∈ Fsand, Ahole ∈ Fhole}

Now, a measure of how good a transference plan works is the trans-
portation distance which can be defined the following way:

Definition 6. (Transportation distance : L. V. Kantorovich) For two prob-
ability measures α and β on a metric space (X, d) the transportation
distance between α and β is defined as

W1(α, β) = inf
T∈Tall(α,β)

∫
X×X

d(x, y)dT (x, y)

Now, the question is how we can reformulate the above concept for
graphs!. We have already seen graph as a metric space. What left is to
associate probability measure to graph (actually to each vertices of graph).
As a first step, for each vertex a ∈ X (set of vertices), we attach a non-
negative function is the following way:

ma : X → [0, 1], x 7→ g(x, a)

wa

Now this is a function but we need a measure (esp. probability measure) ! let
us symbolize our measure as m̂a and if we can prove somehow m̂a(X) = 1,
we are done! To prove this we need to somehow relate the non-negative
function ma and our measure m̂a. Fortunately, there is a theorem to do
that!.

Theorem 1. Let X be an at most countable set. The mapping

{m : X → [0,∞]} →M(X),m 7→ m̂

with
m̂(A) =

∑
x∈A

m(x), A ⊆ X

is a bijection Where, M(X) is the set of all measures on {X, 2X}
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Basically, the theorem tell us for every measure (say, ν) on {X, 2X} there
is m : X → [0,∞] such that ν = m̂ =

∑
x∈Am(x), A ⊆ X. Now with this

theorem back to our graph problem. So every ma can induce a measure m̂a

such that:

m̂a(A) =
∑
x∈A

ma(x)

for every subset A ⊆ X of vertices. For A = X, we have

m̂a(X) =
∑
x∈X

ma(x) =
∑
x∈X

g(x, a)

wa
=

1

wa

∑
x∈X

g(x, a) =
wa
wa

= 1(Probability measure!)

Now, we are in a position to define transportation distance for graphs. Be-
fore the actual definition let us consider some notations:

1. For a vertex a ∈ X in a graph g, we have

ma(x) =
g(x, a)

wa
=
g(a, x)

wa
, x ∈ X

2. The associated measure with vertices a and b are m̂a and m̂b

3. Let the set of all transference plans (for graphs) between a, b ∈ X be
Pab, then

Pab =

{
ζ : X ×X → [0,∞) |

∑
x∈X

ζ(x, z) = mb(z),
∑
y∈X

ζ(z, y) = ma(z)∀z ∈ X,

∑
x,y∈X

ζ(x, y) = 1

}
Now consider the following theorems regarding the transportation dis-

tance for graphs

Theorem 2. Let X be an at most countable set and g a graph over X. For
all a, b ∈ X the transportation distance W1(m̂a, m̂b) satisfies

W1(m̂a, m̂b) = inf
ζ∈Pab

∑
x,x∼a

∑
y,y∼b

d(x, y)ζ(x, y)

d(x, y) is the minimal path length between x and y. The sign j ∼ k
means that j and k are neighbors. Now, in case of finite vertex set X of
graph g, we have the next theorem.

Theorem 3. Let X be a finite set and g a graph over X. For all a, b ∈ X
the transportation distance W1(m̂a, m̂b) satisfies

W1(m̂a, m̂b) = min
ζ∈Pab

∑
x,x∼a

∑
y,y∼b

d(x, y)ζ(x, y)
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Next, we will define the Ollivier-Ricci curvature for graphs.

Definition 7. (Ollivier - Ricci curvature) Let g be a graph over X. For
any two distinct points x, y ∈ X, the Ollivier-Ricci curvature along the
path from x to y is defined as

κ(x, y) = 1− W1(m̂x, m̂y)

d(x, y)
(1)

In general, so far what we achieved is an upper bound on the Wasserstein
metric (W1) and subsequently a lower bound on the Ricci curvature. There
is another theorem called Kantorovich-Rubenstein theorem which pro-
vides an upper bound to the Ricci curvature based on 1-Lipschitz function.

1.2.1 The Kantorovich-Rubenstein theorem

Let X be an at most countable set. LipM (X) or M-Lipschitz (M ∈ R) is
defined as the set of all functions f : X → R on a graph g that satisfy

|f(x)− f(y)| ≤Md(x, y) ∀x, y ∈ X

Theorem 4. (Kanorovich-Rubenstein theorem) Let X be a finite set and
a, b ∈ X. Then, the transportation distance W1 is equal to:

W1(m̂x, m̂y) = sup

{ ∑
z∈X,z∼a

f(z)ma(z)−
∑

z∈X,z∼b
f(z)mb(z) | f ∈ Lip1(X)

}
and we have an associated lemma of inequality:

Lemma 1. Let X be an at most countable set and a, b ∈ X. Then, the
transportation distance W1 is equal to:

W1(m̂x, m̂y) ≥ sup

{ ∑
z∈X,z∼a

f(z)ma(z)−
∑

z∈X,z∼b
f(z)mb(z) | f ∈ Lip1(X)

}
We are going to use of this theorem in the next section to derive an

upper bound of the Ricci curvature for our example graph.

2 Examples

In this section, we will calculate the Ollivier-Ricci curvature (coarse) for
some graphs. First take a simple example of a regular tetrahedron (un-
weighted). This is a simple undirected graph with vertex set X = {1, 2, 3, 4}.
Now consider g(x, y) is either 0 ( x � y) or 1 (x ∼ y or neighbors). Let
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us take vertices a = 1 and b = 2 and we will calculate W1 between these
two vertices. Now, the degree of vertex 1 is 3 denoted by wa and degree of
vertex 2 is also 3 denoted by wb. Now consider Na be the set of neighbors of
a and Nb be the set of neighbors of b. Therefore, in our case Na = {2, 3, 4}
and Nb = {1, 3, 4}. Because Now consider the following notation:

mi(j) =
g(i, j)∑
x∈X g(i, x)

Now using the above formula let us calculate m1(j) and m2(j). Here we will
see two calculations to understand the difference that when i � j, mi(j) = 0.

m1(1) =
g(1, 1)∑
x∈X g(1, x)

=
g(1, 1)

g(1, 1) + g(1, 2) + g(1, 3) + g(1, 4)
=

0

0 + 1 + 1 + 1
= 0

m1(2) =
g(1, 2)∑
x∈X g(1, x)

=
g(1, 2)

g(1, 1) + g(1, 2) + g(1, 3) + g(1, 4)
=

1

0 + 1 + 1 + 1
= 1/3

In similar fashion, we can obtain the M matrix whose elements are mi(j)
or m(i, j) as following (for vertices 1 and 2 only):

M =

[
0 1/3 1/3 1/3

1/3 0 1/3 1/3

]
As a physical interpretation of mi(j), we can say that it represents the dis-
tribution of mass around the neighbors of location i. Now we will calculate
ζ(x, y). But first rewrite the structure of the set contains ζ.

Pab =

{
ζ : X ×X → [0,∞) |

∑
x∈X

ζ(x, z) = mb(z),
∑
y∈X

ζ(z, y) = ma(z)∀z ∈ X,

∑
x,y∈X

ζ(x, y) = 1

}
Following the above structure, we can have some initial results for the entries
in the matrix ζ.∑

x∈X
ζ(x, 2) = m2(2) = 0 =⇒ ζ(x, 2) = 0∀x ∈ X
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This is because for x, y ∈ X, ζ(x, y) ≥ 0 Similarly have,∑
y∈X

ζ(1, y) = m1(1) = 0 =⇒ ζ(1, y) = 0∀y ∈ X

So the initial construction of ζ matrix is as follows:

ζ =


0 0 0 0
∗ 0 ∗ ∗
∗ 0 ∗ ∗
∗ 0 ∗ ∗


Now, let us form rest of the equations for ζ. Varying the rows, we have

ζ(1, 1) + ζ(2, 1) + ζ(3, 1) + ζ(4, 1) = m2(1) = 1/3

ζ(1, 3) + ζ(2, 3) + ζ(3, 3) + ζ(4, 3) = m2(3) = 1/3

ζ(1, 4) + ζ(2, 4) + ζ(3, 4) + ζ(4, 4) = m2(4) = 1/3

Now varying the columns, we have

ζ(2, 1) + ζ(2, 2) + ζ(2, 3) + ζ(2, 4) = m1(2) = 1/3

ζ(3, 1) + ζ(3, 2) + ζ(3, 3) + ζ(3, 4) = m1(3) = 1/3

ζ(4, 1) + ζ(4, 2) + ζ(4, 3) + ζ(4, 4) = m1(4) = 1/3

We also have another constraint that the sum of all the elements in ζ is equal
to 1. From the above equations we can construct a linear programming
problem with constraint in the form of AY = B. Now let us see what these
A, Y and B are. Y and B are column vectors with the following entries:

Y =



ζ(1, 1)
ζ(1, 2)
ζ(1, 3)
ζ(1, 4)

ζ(2, 1)
ζ(2, 2)
ζ(2, 3)
ζ(2, 4)

ζ(3, 1)
ζ(3, 2)
ζ(3, 3)
ζ(3, 4)

ζ(4, 1)
ζ(4, 2)
ζ(4, 3)
ζ(4, 4)



B =



m1(1) = 0
m1(2) = 1/3
m1(3) = 1/3
m1(4) = 1/3

m2(1) = 1/3
m2(2) = 0
m2(3) = 1/3
m2(4) = 1/3



9



Therefore the matrix A will be the following:

A =



1 . . . 1
. . .

1 . . . 1

1 1
. . . . . .

. . .

1 1


A is totally unimodular and has entries 0 and 1. Moreover, A has no more
than 2 non-zero entries on each column. A very simple choice for ζ would
be

ζ =


0 0 0 0

1/9 0 1/9 1/9
1/9 0 1/9 1/9
1/9 0 1/9 1/9

 =
1

3× 3


0 0 0 0
1 0 1 1
1 0 1 1
1 0 1 1


So, the number of non-zero entries in ζ is at most the number of neighbors
of a multiplied by the number of neighbors of b (in this particular type of
uniform measure). Now the question is that if this choice is optimal or not.
Solving the linear programming problem (in MATLAB or else) we can easily
get the optimal choice which is:

ζopt =


0 0 0 0

1/3 0 0 0
0 0 1/3 0
0 0 0 1/3


Now the Wasserstein distance or W1(m̂1, m̂2) for the optimal choice is:

W1(m̂1, m̂2) =
∑
x,x∼1

∑
y,y∼2

d(x, y)ζopt(x, y)

=
∑
x,x∼1

d(x, 1)ζopt(x, 1) + d(x, 3)ζopt(x, 3) + d(x, 4)ζopt(x, 4)

= d(2, 1)ζopt(2, 1) + d(2, 3)ζopt(2, 3) + d(2, 4)ζopt(2, 4)

+ d(3, 1)ζopt(3, 1) + d(3, 3)ζopt(3, 3) + d(3, 4)ζopt(3, 4)

+ d(4, 1)ζopt(4, 1) + d(4, 3)ζopt(4, 3) + d(4, 4)ζopt(4, 4)

= d(2, 1)ζopt(2, 1) + d(3, 3)ζopt(3, 3) + d(4, 4)ζopt(4, 4)

= 1× 1/3 + 0× 1/3 + 0× 1/3

= 1/3

Now let us see what could be the value of W1(m̂1, m̂2) for our previous
simple choice i.e. each non-zero entry is 1/9. It will be 7/9 (as we have two
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zero entries d(3, 3) and d(4, 4). Definitely this is not the minimum!. Now,
we are going to use the Kantorovich-Rubenstein theorem to derive a
lower bound on the W1 metric. For any f ∈ Lip1(X) we have the following

W1(m̂x, m̂y) ≥
∑

z∈X,z∼1

f(z)m1(z)−
∑

z∈X,z∼2

f(z)m2(z)

f(2)m1(2) + f(3)m1(3) + f(4)m1(4)

− f(1)m2(1)− f(3)m2(3)− f(4)m2(4)

= 1/3(f(2)− f(1))

Now, f : X → R be such that f(2) = 1 and f(x) = 0 for x 6= 2. Therefore,
W1(m̂x, m̂y) ≥ 1/3 Therefore, the Ricci curvature of the edge 1 ∼ 2 for our
optimal choice is:

κ(1, 2) = 1− 1/3

1
= 2/3

For regular tetrahedron, this is same for all the edges due to symmetry.
Note that the upper and lower bound for W1 may not be same for all kinds
of graphs.

Now, for example if we remove one of the edges from the tetrahedron,
say for example edge 1 ∼ 3, we have the resulting figure:

4

2

31

Now, if we calculate the Ricci curvature for the edge 1 ∼ 2, it will be
lesser. Let us see what will happen. Our M matrix will be :

M =

[
0 1/2 0 1/2

1/3 0 1/3 1/3

]
and in the same way (using Linear programming), we obtain the ζ matrix

ζopt =


0 0 0 0

0.5 0 0.5 0
0 0 0 0

0.0833 0 0.0833 0.33


The Wasserstein distance is 0.667 (obtained in the same way as above).
Finally the Ricci curvature for 1 ∼ 2 is 0.33 which is lesser than that of the
regular tetrahedron!. Next, we consider a weighted graph as follows:

11



4

2

31

1
1

1

0.5
1

Here, we redefine our measure function (mi(j)) as follows:

mi(j) =

{
ρij∑

x∈Ni
ρix

if ij ∈ E
0 otherwise

Where ρij is the weight of the edge i ∼ j, Ni is the set of neighbors of i, E
is the set of edges of the graph. In this set up, we have the M matrix as
follows:

M =

[
0 0.33 0 0.667

0.2 0 0.4 0.4

]
and subsequently,

ζopt =


0 0 0 0

0.2 0 0.1333 0
0 0 0 0
0 0 0.2667 0.4


The corresponding the Wasserstein distance is 0.6 and the Ollivier-Ricci
curvature is 0.4– slightly improvement from the previous one!.

3 Discussion

In this report we have discussed the coarse Ollivier-Ricci curvature for the
graphs. There are quite a handful of research papers [4, 3, 1, 5] which
discussed and modified the definition of Ollivier-Ricci in a slightly different
way. For example, [4] considers the measure mα

x(y) as a lazy random walk
in the following way:

mα
x(y) =


α if y = x
1−α
dx

if y ∈ Nx

0

Where, Nx denotes the set of neighbor of vertex x and dx denotes the degree
of x and α ∈ [0, 1]. The corresponding α-Ricci curvature is:
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κα(x, y) = 1−
W1(m̂α

x , m̂
α
y )

d(x, y)
(2)

We can observe that, if α → 1, κα(x, y) → 0 and the asymptotic Ollivier-
Ricci curvature is:

Ric(x, y) = lim inf
α→1

κα(x, y)

1− α
(3)

This definition is more appropriate for a Markov chain defined on the graph.
It corresponds to a continuous Markov process. The authors show that with
Ric the curvature for cube is 2/3 where as with our previous coarse form it
is 0. Moreover, for dodecahedron Ric is 0 or at-least non-negative but with
our usual coarse form it is negative −1/3 which should not be as it is an
abstraction from sphere and should have non-negative Ricci curvature.

Some practical graph theoretical applications of Ollivier-Ricci curvature can
be found in [6, 8, 10]. Papers [6, 10] used the definition of κα(x, y). [6]
interprets that in a complex network, negative Ricci curvature edges act
as bridges. Hence, removal of these edges makes the whole graph discon-
nected very fast! Hence it is not desirable to have more number of negative
Ricci curvature edges in a graph/network. It affects the robustness of the
graph/network. The same conclusion is drawn by the paper [8]. Here the
authors relate the Ricci curvature to the entropy of the network and ap-
plied it to measure the robustness in cancer networks (interactions between
genes). In an example they show that the well studied E-coli transcription
network (which claimed to be a robust network structure) has less number of
negative curvature edges than its random counterpart. Paper [6] also infer
that the positive curvature edges have more number of triangles associated
with them which is also natural according to the findings of the paper [3]
which shows that the inclusion of triangles increases the Ricci curvature.
The authors in [3] provide a sharp lower bound on Ricci curvature based on
the number of triangles in the graph and subsequently relate the curvature
to the clustering coefficient of the graph. Sharp inequality (lower bound) on
Ricci curvature for a undirected, weighted, connected, finite (multi) graph
is provided by [2] which is claimed to be inappropriate for example in case
of Euclidean square lattice [10]. Hence the usual way of linear programming
is necessary to estimate the exact value of the curvature.

From the above discussion, it is evident that the Ricci-curvature based ap-
proach especially on discrete structures like graphs is promising. Therefore
it will be interesting also to investigate further on how to apply the concept
on graphical abstraction of mechanical structures and infer the qualitative
properties of the structure most importantly robustness.
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[5] Benôıt Loisel and Pascal Romon. Ricci curvature on polyhedral surfaces
via optimal transportation. Axioms, 3(1):119–139, 2014.

[6] Chien-Chun Ni, Yu-Yao Lin, Jie Gao, Xianfeng David Gu, and Emil
Saucan. Ricci curvature of the internet topology. arXiv preprint
arXiv:1501.04138, 2015.

[7] Yann Ollivier. Ricci curvature of markov chains on metric spaces. Jour-
nal of Functional Analysis, 256(3):810–864, 2009.

[8] Allen Tannenbaum, Chris Sander, Liangjia Zhu, Romeil Sandhu, Ivan
Kolesov, Eduard Reznik, Yasin Senbabaoglu, and Tryphon Georgiou.
Ricci curvature and robustness of cancer networks. arXiv preprint
arXiv:1502.04512, 2015.

[9] Cédric Villani. Topics in optimal transportation. Number 58. American
Mathematical Soc., 2003.

[10] Chi Wang, Edmond Jonckheere, and Reza Banirazi. Wireless network
capacity versus ollivier-ricci curvature under heat-diffusion (hd) proto-
col. In American Control Conference (ACC), 2014, pages 3536–3541.
IEEE, 2014.

14


