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Definition(s)

A collection of random variables indexed by time

Z (t) =

{
{X0,X1,X2, . . . } Discrete time

{Xt}t≥0 Continuous time

Alternate definition: Probability distribution over a space of paths

Example

1 f (t) = t with prob. 1

2 f (t) =

{
t ∀t with prob.0.5

−t ∀t with prob.0.5

3 For each t, f (t) =

{
t ∀t with prob.0.5

−t ∀t with prob.0.5
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Questions of interest

1 What are the dependencies in the sequence of values?

{Xti+1 − Xti , i = 0, 1, 2 . . . }

are mutually independent or not?

2 What is the long term behaviour (LLN, CLT)?

(Z (t)
fdd−−→W , t →∞)

fdd : Finite dimensional distribution (rem: Kolmogorov’s extension
theorem)

3 What is the probability of a boundary (rare) event (how often
something extreme happens)?

P(Z (t) > high level)
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Simple Random Walk: simplest stochastic process

Definition

Let Yi be i.i.d random variables such that:

Yi =

{
1 with prob.0.5

−1 with prob.0.5

and

Xt =
t∑

i=1

Yi ,X0 = 0

Then Z (t) = {X0,X1,X2, . . . } is a one dimensional simple random walk
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Simple Random Walk: properties

1 Expectation: E (Xt) = 0

2 Independent increments: For 0 = t0 ≤ t1 ≤ · · · ≤ tk ,
{Xti+1 − Xti ., i = 0, 1, 2 . . . k − 1} are mutually independent
Remark: what happens from time 20 to 30 is irrelevant to what
happens from 40 to 50

3 (Stationary?) ∀h ≥ 1, t ≥ 0 the distribution of Xt+h − Xt is same as
the distribution of Xh

Remark: If we look at the same amount of time, then what happens
inside the time interval is irrelevant of starting point as the
distribution is same.
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Simple Random Walk: example

Game: Coin toss

Rule: Toss a fair coin– if head, I win 1 e else I loose 1 e(Assume
start from 0 balance)

My balance will follow a simple random walk

Situtation: I will play untill I win e100 or loose e100

Question: What is the probabilty that I will stop playing after
winining e100?

Answer : 1/2

Situtation: I will play untill I win e100 or loose e50

Question: What is the probabilty that I will stop playing after
winining e100?

Answer: 1/3 (Martingale theory; comes later)
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Markov chains

A stochastic process is called a Markov chain if it has a specfic
property : Markov property

Markov property: Future depends ONLY on the present and not on
the past.

Mathematically:

Pr(Xt+1 = x |X1 = x1, . . . ,Xt = xt) = Pr(Xt+1 = x |Xt = xt)

if Pr(X1 = x1, . . . ,Xt = xt) > 0, conditional probabilities are well
defined
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Markov chains: some interesting facts

Simple random walk is a Markov chain, why? New coin toss ever
time, past does not matter !

Transition matrix: collection of probabilities of moving from one state
to another.

State space of SWR is infinite =⇒ No transition matrix

N-step transition probability is called the famous
Chapman-Kolmogorov (C-K) equation.

Differential form of C-K equation is called the Master equation

Master euqation for biochemical reactions → Chemical Master
Equation (CME)- the fundamental equation for stochastic modelling
of biochemical processes
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Martingales: be fair!

Stochastic processes for ”fair” games: In expectation you will not win
any money at all or it exclude the possibility of winning strategies
based on game history.

Mathematically:
E(Xt+1|X1, . . . ,Xt) = Xt

Example : simple random walk

The Optional Stopping Time theorem:
I Main concept: If one plays a Martingale game, no matter what

strategy he/she uses, the expected value will remain same.

I Stopping time: A positive integer valued r.v. which provides rules to
stop a random process. The decision depends on all the events up to
that time. NO future dependencies (why?)
Examples: In our coin toss game, the first time we win e100 or loose
e50; time of first peak (not a stopping time ! why? )
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Optional Stopping Time theorem

Theorem

(Informal way) Let there is a martingale with stopping time T , and
suppose there is a constant K such that T ≤ K always. In this case the
expectation value at the stopping time is always equal to the value at the
beginning.

Coin toss revisited

consider the second situation: I will play until I win e100 or loose e50

Now, we can define a stopping time for this (strategy) say τ . According to
the above theorem:

E (Xτ ) = X0 = 0 =⇒ 100p + (1− p) ∗ (−50) = 0 =⇒ p = 1/3
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Brownian motion: simplest continuous time stochastic
process

Denoted by B(t) - serves basic model for the cumulative noise.

Definition

B(t) is a stochastic process having the following properties:

For any 0 < u < s < t, {B(t)− B(s)} and {B(u)− B(0)} are
independent of each other (Independent increments)

{B(t)− B(s)} ∼ N (0, t − s)

B(t) is continuous everywhere.

Path properties of B(t)

Has infinite variation on any interval

Quadratic variation on [0, t] equal to t
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Quadratic variation: invitation to Itô calculus

Definition

If g is a function of real variable, define its quadratic variation over the
interval [0, t] as the limit (when it exists)

[g ](t) = lim
δn→0

n∑
i=1

(g(tni )− g(tni−1)2

Where the limit is taken over the partitions: 0 = tn0 < tn1 , . . . , < tnn = t,
with δn = max1≤i≤n(tni − tni−1)

Important facts:

For enough smooth function having finite variation, this quadratic
variation is zero! =⇒ We can apply Riemannian calculus.

For B(t), quadratic variation is not zero hence we can not apply
classical calculus → starting point of Itô calculus
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Glimpse of Itô calculus: differentiation

Motivation: We want to compute infinitesimal differences of f (B(t)),
where f is a smooth and nice function

Now suppose B(t) is differentiable then, df = dB(t)
dt dt – easy!

But we can not do that! reason: quadratic variation of B(t) is
dB(t)2 = dt

How about df = f ′(B(t))dB(t)? WRONG!

Using Taylor expansion,

f (t + x)− f (t) = f ′(t)x (classical calculus)

Now for f (B(t))

f (B(t + x))− f (B(t)) = f ′(B(t))dB(t) + 1/2f ′′(B(t))(dB(t)))2 + . . .

df = f ′(B(t))dB(t) + 1/2f ′′(B(t))dt

This is Itô’s lemma
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Glimpse of Itô calculus: differentiation

Motivation: We want to compute infinitesimal differences of f (B(t)),
where f is a smooth and nice function

Now suppose B(t) is differentiable then, df = dB(t)
dt dt – easy!

But we can not do that! reason: quadratic variation of B(t) is
dB(t)2 = dt

How about df = f ′(B(t))dB(t)?

WRONG!

Using Taylor expansion,

f (t + x)− f (t) = f ′(t)x (classical calculus)

Now for f (B(t))

f (B(t + x))− f (B(t)) = f ′(B(t))dB(t) + 1/2f ′′(B(t))(dB(t)))2 + . . .

df = f ′(B(t))dB(t) + 1/2f ′′(B(t))dt

This is Itô’s lemma
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Glimpse of Itô calculus: integration

Integrations is nothing but ’inverse’ of differentiation
So Let us define:

F (t,B(t)) =

∫
f (t,B(t))dB(t) +

∫
g(t,B(t))dt

if dF = fdB(t) + gdt

Question: Does there exists Riemannian sum type description?

Answer: Itô integral is the limit of Riemannian sums when always
take leftmost point of each interval → You can not see the future!

Reason:Due to quadratic variance the two limits(left and right) are
different (variance accumulates)!

Debdas Paul Stochastic processes: translate maths to sense 19 / 22



Glimpse of Itô calculus: integration

Integrations is nothing but ’inverse’ of differentiation
So Let us define:

F (t,B(t)) =

∫
f (t,B(t))dB(t) +

∫
g(t,B(t))dt

if dF = fdB(t) + gdt

Question: Does there exists Riemannian sum type description?
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Question: Does there exists Riemannian sum type description?

Answer: Itô integral is the limit of Riemannian sums when always
take leftmost point of each interval → You can not see the future!

Reason:Due to quadratic variance the two limits(left and right) are
different (variance accumulates)!
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Girsanov’s theorem: change of measure

Motivation: Consider {
B(t) without drift

B̂(t) with drift

Q: Can we switch between B(t) and B̂(t) by change of measure

A: Yes. According to the theorem B̂(t) and B(t) can be converted to
each other using simple multiplication (multiply with Radon-Nikodym
derivative)!

Utility: convert a non-martingale process (with non-zero drift term)
(might be risky) to a martingale process (safe!)
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